Exercise set 9: Solutions

Norwegian University of Science and Technology
Department of Mathematical
Sciences

1 (14.2)

Evaluate the double integrals below by iteration.
a) $\iint_{T}(x-3 y) d A$, where T is the triangle with vertices $(0,0),(a, 0)$, and $(0, b)$.
b) $\iint_{R} \frac{x}{y} e^{y} d A$, where R is the region $0 \leq x \leq 1, x^{2} \leq y \leq x$.

Solution.

a)

We have

$$
\begin{aligned}
\iint_{T}(x-3 y) d A & =\int_{0}^{a}\left(\int_{0}^{b\left(1-\frac{x}{a}\right)}(x-3 y) d y\right) d x \\
& =\left.\int_{0}^{a}\left(x y-\frac{3}{2} y^{2}\right)\right|_{y=0} ^{y=b\left(1-\frac{x}{a}\right)} d x \\
& =\int_{0}^{a}\left[b\left(x-\frac{x^{2}}{a}\right)-\frac{3}{2} b^{2}\left(1-\frac{2 x}{a}+\frac{x^{2}}{a^{2}}\right)\right] d x \\
& =\left.\left(b \frac{x^{2}}{2}-\frac{b}{a} \frac{x^{3}}{3}-\frac{3}{2} b^{2} x+\frac{3}{2} \frac{b^{2} x^{2}}{a}-\frac{1}{2} \frac{b^{2} x^{3}}{a^{2}}\right)\right|_{0} ^{a} \\
& =\frac{a^{2} b}{6}-\frac{a b^{2}}{2}
\end{aligned}
$$

b)

We have

$$
\begin{aligned}
\iint_{R} \frac{x}{y} e^{y} d A & =\int_{0}^{1} \frac{e^{y}}{y} d y \int_{y}^{\sqrt{y}} x d x \\
& =\frac{1}{2} \int_{0}^{1}(1-y) e^{y} d y \\
& =\frac{1}{2} \int_{0}^{1}(1-y) d\left(e^{y}\right) \\
& =\left.\frac{1}{2}(1-y) e^{y}\right|_{0} ^{1}+\frac{1}{2} \int_{0}^{1} e^{y} d y \\
& =-\frac{1}{2}+\frac{1}{2}(e-1)=\frac{e}{2}-1 .
\end{aligned}
$$

2 (14.3)
Evaluate

$$
I=\iint_{S} \frac{1}{x+y} d A
$$

where S is the square $0 \leq x \leq 1,0 \leq y \leq 1$,
a) by direct iteration of the double integral,
b) by using the symmetry of the integrand and the domain to write

$$
I=2 \iint_{T} \frac{1}{x+y} d A
$$

where T is the triangle with vertices $(0,0),(1,0)$, and $(1,1)$.

Solution.

a)

We get

$$
\begin{aligned}
I & =\iint_{S} \frac{1}{x+y} d A=\int_{0}^{1}\left(\int_{0}^{1} \frac{1}{x+y} d y\right) d x \\
& =\int_{0}^{1}\left(\left.\ln (x+y)\right|_{y=0} ^{y=1}\right) d x \\
& =\left.\lim _{c \rightarrow 0+}[(x+1) \ln (x+1)-x \ln (x)]\right|_{c} ^{1} \\
& =\lim _{c \rightarrow 0+} 2 \ln (2)-0-(c+1) \ln (c+1)+c \ln (c)=2 \ln (2) .
\end{aligned}
$$

b)

We get

$$
\begin{aligned}
I & =2 \iint_{T} \frac{1}{x+y} d A \\
& =2 \lim _{c \rightarrow 0+} \int_{c}^{1}\left(\int_{0}^{x} \frac{1}{x+y} d y\right) d x \\
& =2 \lim _{c \rightarrow 0+} \int_{c}^{1}\left(\left.\ln (x+y)\right|_{y=0} ^{y=x}\right) d x \\
& =2 \lim _{c \rightarrow 0+} \int_{c}^{1}(\ln (2 x)-\ln (x)) d x \\
& =2 \ln (2) \int_{0}^{1} d x=2 \ln (2)
\end{aligned}
$$

3 (14.4)

Evaluate the double integrals below.
a) $\iint_{D} \sqrt{x^{2}+y^{2}} d A$, where D is the disk $x^{2}+y^{2} \leq a^{2}, a>0$.
b) $\iint_{S} x d A$, where S is the disk segment $x^{2}+y^{2} \leq 2, x \geq 1$.

Solution.

a)

We have

$$
\iint_{D} \sqrt{x^{2}+y^{2}} d A=\int_{0}^{2 \pi} d \theta \int_{0}^{a} r^{2} d r=\frac{2 \pi a^{3}}{3}
$$

b)

We have

$$
\begin{aligned}
\iint_{S} x d A & =2 \int_{0}^{\frac{\pi}{4}} d \theta \int_{\sec (\theta)}^{\sqrt{2}} r \cos (\theta) \cdot r d r \\
& =\frac{2}{3} \int_{0}^{\frac{\pi}{4}} \cos (\theta)\left(2 \sqrt{2}-\sec ^{3}(\theta)\right) d \theta \\
& =\left.\frac{4 \sqrt{2}}{3} \sin (\theta)\right|_{0} ^{\frac{\pi}{4}}-\left.\frac{2}{3} \tan (\theta)\right|_{0} ^{\frac{\pi}{4}} \\
& =\frac{4}{3}-\frac{2}{3}=\frac{2}{3}
\end{aligned}
$$

Find the volume of the region in the first octant below the paraboloid

$$
z=1-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}
$$

Hint: Use the change of variables $x=a u, y=b v$.

Solution.

Let E be the region in the first quadrant of the $x y$-plane bounded by the coordinate axes and the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. The required volume is

$$
V=\iint_{E}\left(1-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\right) d x d y
$$

Let $x=a u, y=b v$. Then

$$
d x d y=\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v=a b d u d v
$$

Thus,

$$
V=a b \iint_{Q}\left(1-u^{2}-v^{2}\right) d u d v
$$

The region E corresponds to the quarter disk $Q: u^{2}+v^{2} \leq 1, u, v \geq 0$ in the $u v$-plane. Now transform to polar coordinates in the $u v$-plane: $u=r \cos (\theta), v=r \sin (\theta)$.

$$
\begin{aligned}
V & =a b \int_{0}^{\frac{\pi}{2}} d \theta \int_{0}^{1}\left(1-r^{2}\right) r d r \\
& =\left.\frac{\pi a b}{2}\left(\frac{r^{2}}{2}-\frac{r^{4}}{4}\right)\right|_{0} ^{1}=\frac{\pi a b}{8}
\end{aligned}
$$

5 (14.4)
Let T be the triangle with vertices $(0,0),(1,0)$, and $(0,1)$. Evaluate the integral $\iint_{T} e^{\frac{y-x}{y+x}} d A$
a) by transforming to polar coordinates,
b) by using the transformation $u=y-x, v=y+x$.

Solution.

a)

$$
\begin{aligned}
I & =\int_{0}^{\frac{\pi}{2}} d \theta \int_{0}^{\frac{1}{\cos (\theta)+\sin (\theta)}} e^{\frac{\cos (\theta)-\sin (\theta)}{\sin (\theta)+\cos (\theta)}} \cdot r d r \\
& =\frac{1}{2} \int_{0}^{\frac{\pi}{2}} e^{\frac{\cos (\theta)-\sin (\theta)}{\sin (\theta)+\cos (\theta)}} \frac{1}{(\cos (\theta)+\sin (\theta))^{2}} d \theta
\end{aligned}
$$

Let $u=\frac{\cos (\theta)-\sin (\theta)}{\sin (\theta)+\cos (\theta)}$, then $d u=-\frac{2}{(\cos (\theta)+\sin (\theta))^{2}} d \theta$. Thus,

$$
I=\frac{1}{4} \int_{-1}^{1} e^{u} d u=\frac{e-e^{-1}}{4}
$$

b)

If $u=y-x, v=y+x$, then

$$
\frac{\partial(u, v)}{\partial(x, y)}=\left|\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right|=-2
$$

so that $d A=d x d y=\frac{1}{2} d u d v$. Also, T corresponds to the triangle T^{\prime} bounded by $u=-v$, $u=v$, and $v=1$. Thus,

$$
\begin{aligned}
I & =\frac{1}{2} \iint_{T^{\prime}} e^{\frac{u}{v}} d u d v \\
& =\frac{1}{2} \int_{0}^{1}\left(\int_{-v}^{v} e^{\frac{u}{v}} d u\right) d v \\
& =\left.\frac{1}{2} \int_{0}^{1}\left(v e^{\frac{u}{v}}\right)\right|_{-v} ^{v} d v \\
& =\frac{1}{2}\left(e-e^{-1}\right) \int_{0}^{1} v d v=\frac{e-e^{-1}}{4} .
\end{aligned}
$$

6 (14.5)
Evaluate the triple integrals below over the indicated region.
a) $\iiint_{R}(1+2 x-3 y) d V$, over the box $-a \leq x \leq a,-b \leq y \leq b,-c \leq z \leq c$.
b) $\iiint_{R} y z^{2} e^{-x y z} d V$, over the cube $0 \leq x, y, z \leq 1$.

Solution.

a)
R is symmetric about the coordinate planes and has volume $8 a b c$. Thus

$$
\begin{aligned}
& \iiint_{R}(1+2 x-3 y) d V \\
= & \iiint_{R} d V+2 \iiint_{R} x d V-3 \iiint_{R} y d V \\
= & \text { volume of } R+0-0=8 a b c .
\end{aligned}
$$

b)
R is the cube $0 \leq x, y, z \leq 1$. We have

$$
\begin{aligned}
& \iiint_{R} y z^{2} e^{-x y z} d V \\
= & \int_{0}^{1} z\left(\left.\int_{0}^{1}\left(-e^{-x y z}\right)\right|_{x=0} ^{x=1} d y\right) d z \\
= & \int_{0}^{1} z\left(\int_{0}^{1}\left(1-e^{-y z}\right) d y\right) d z \\
= & \int_{0}^{1} z\left(1+\left.\frac{1}{z} e^{-y z}\right|_{y=0} ^{y=1}\right) d z \\
= & \frac{1}{2}+\int_{0}^{1}\left(e^{-z}-1\right) d z \\
= & \frac{1}{2}-1-\left.e^{-z}\right|_{0} ^{1}=\frac{1}{2}-\frac{1}{e} .
\end{aligned}
$$

7 a) Old exam problem.
A region R in space (på norsk: rommet) is bounded by (på norsk: avgrenset av) the surfaces $z=y^{2}, z=2-y, x=0$, and $x=2$. Sketch the region R and determine its volume.
b) Old exam problem.

Let T denote the body (på norsk: legemet) determined by $x \geq 0 y \geq 0$, and $0 \leq z \leq 1-\sqrt{x^{2}+y^{2}}$. Given that the mass density (The mass density of an object is defined as its mass per unit volume) of T at a point $(x, y, z) \in T$ is $\delta(x, y, z)=z\left(x^{2}+y^{2}\right)$, determine the mass of T (Mass is the quantity of matter in a physical body).
Hint: According to the definition of mass density and mass, the mass of T is denoted by the triple integral $M(T)=\iiint_{T} \delta d V$.

Solution.

a)

A sketch of the region R is given in Figure 1 below. Let $\lambda(R)$ denote the volume of R. Then $\lambda(R)=\iiint_{R} d z d y d x$. From the figure, z runs from the cylinder $z=y^{2}$ to the plane $z=2-y . x$ runs from 0 to 2 , and the range of y is obtained from the intersections of the surfaces $z=y^{2}$ and $z=2-y$. That is, from the solutions of the quadratic equation $y^{2}+y-2=0$. The left-hand side of this equation can be factorized as $(y+2)(y-1)$ so the solutions are $y=-2$ and $y=1$. Thus, y runs from -2 to 1 . Hence,

$$
\lambda(R)=\int_{0}^{2} \int_{-2}^{1} \int_{y^{2}}^{2-y} d z d y d x=2 \int_{-2}^{1}\left(2-y-y^{2}\right) d y=9
$$

Figure 1: A sketch of the region R in Problem $6 \mathbf{a})$. It is a parabolic cylinder $\left(z=y^{2}\right)$ with symmetry axis along the x-axis (over the interval $[0,2]$) with a skew plane (the plane $z=2-y$) as a "lid".

b)

Let $M(T)$ denote the mass of T. By definition, $M(T)=\iiint_{T} \delta d V$. We use cylindrical coordinates r, θ, z. Then $1-\sqrt{x^{2}+y^{2}}=1-r$. Since $x, y \geq 0$, we find that $\theta \in\left[0, \frac{\pi}{2}\right]$. In the (r, z)-plane, the region of integration is given by $0 \leq z \leq 1-r$. This is a triangle with vertices at $(0,0),(0,1)$ and $(1,0)$. Thus, r runs from 0 to 1 . Finally, under this change of variables the density function becomes $z r^{2}$, so we find

$$
\begin{aligned}
M(T) & =\int_{0}^{\frac{\pi}{2}} \int_{0}^{1} \int_{0}^{1-r} z r^{3} d z d r d \theta=\frac{\pi}{2} \int_{0}^{1} \frac{1}{2} r^{3}(1-r)^{2} d r=\frac{\pi}{4} \int_{0}^{1} r^{3}\left(1-2 r+r^{2}\right) d r \\
& =\frac{\pi}{4} \int_{0}^{1} r^{3}-2 r^{4}+r^{5} d r=\frac{\pi}{4}\left(\frac{1}{4}-\frac{2}{5}+\frac{1}{6}\right)=\frac{\pi}{240}
\end{aligned}
$$

