Norwegian University of Science and Technology
Department of Mathematical
Sciences

1 (12.4)
Let u and v be two twice continuously differentiable real-valued functions defined on an open subset $U \subset \mathbb{R}^{2}$ which satisfy the so-called Cauchy-Riemann equations

$$
\begin{aligned}
& \frac{\partial u}{\partial x}(x, y)=\frac{\partial v}{\partial y}(x, y), \\
& \frac{\partial u}{\partial y}(x, y)=-\frac{\partial v}{\partial x}(x, y)
\end{aligned}
$$

for all $(x, y) \in U$. Show that u and v are harmonic in U. That is, satisfy the 2-dimensional Laplace equation $\Delta(\cdot)=0$ where $\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}$, in U.

Hint: it will be necessary to use and refer to a certain theorem.

Solution.

Since u and v are given to be twice continuously differentiable, we have from the theorem on equality of mixed partial derivatives, that $\frac{\partial^{2} v}{\partial x \partial y}=\frac{\partial^{2} v}{\partial y \partial x}$ and similarly for u. From $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$, differentiating the first equality with respect to x and the second with respect to y, we therefore get

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=\frac{\partial^{2} v}{\partial x \partial y}+\left(-\frac{\partial^{2} v}{\partial y \partial x}\right)=0 .
$$

This shows that u is harmonic, and the argument for v being harmonic is similar.

2 (12.9)

Find the Taylor series for the given functions near the indicated points.
a) $f: \mathbb{R}^{2} \rightarrow \mathbb{R},(x, y) \mapsto 2 x^{2}-x y-y^{2}-6 x-3 y+5, \quad\left(x_{0}, y_{0}\right)=(1,-2)$
b) $f: \mathbb{R}^{2} \rightarrow \mathbb{R},(x, y) \mapsto \sin (2 x+3 y), \quad\left(x_{0}, y_{0}\right)=(0,0)$

Solution.

a)

We have

$$
\begin{aligned}
& f(1,-2)=5, \quad f_{x}(1,-2)=\left.(4 x-y-6)\right|_{(1,-2)}=0 \\
& f_{y}(1,-2)=\left.(-x-2 y-3)\right|_{(1,-2)}=0 \\
& f_{x x}(1,-2)=4, \quad f_{x y}(1,-2)=-1, \quad f_{y y}(1,-2)=-2
\end{aligned}
$$

This function is a quadratic polynomial, so the third order partial derivative and above are all equal to 0 . Thus, the Taylor series for f about $(1,-2)$ is given by

$$
\begin{aligned}
f(x, y)= & f(1,-2)+(x-1) f_{x}(1,-2)+(y+2) f_{y}(1,-2) \\
& +\frac{1}{2!}\left[(x-1)^{2} f_{x x}(1,-2)+2(x-1)(y+2) f_{x y}(1,-2)+(y+2)^{2} f_{y y}(1,-2)\right] \\
= & 5+\frac{1}{2}\left[4(x-1)^{2}-2(x-1)(y+2)-2(y+2)^{2}\right] \\
= & 5+2(x-1)^{2}-(x-1)(y+2)-(y+2)^{2} .
\end{aligned}
$$

b)

Recall the Taylor series for $\sin (x)$ at $x=0$ is

$$
\sin (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}
$$

Thus, to our f, we have

$$
\begin{align*}
& f(x, y)=\sin (2 x+3 y)=\sum_{n=0}^{\infty}(-1)^{n} \frac{(2 x+3 y)^{2 n+1}}{(2 n+1)!} \\
= & \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} \sum_{j=0}^{2 n+1} \frac{(2 n+1)!}{j!(2 n+1-j)!}(2 x)^{j}(3 y)^{2 n+1-j} \\
= & \sum_{n=0}^{\infty} \sum_{j=0}^{2 n+1} \frac{(-1)^{n} 2^{j} 3^{2 n+1-j}}{j!(2 n+1-j)!} x^{j} y^{2 n+1-j}, \tag{1}
\end{align*}
$$

where we have used the binomial theorem in the second last step that

$$
\begin{aligned}
& (2 x+3 y)^{2 n+1} \\
= & \binom{2 n+1}{0}(2 x)^{2 n+1}(3 y)^{0}+\binom{2 n+1}{1}(2 x)^{2 n}(3 y)^{1}+\binom{2 n+1}{2}(2 x)^{2 n-1}(3 y)^{2}+\cdots \\
& +\binom{2 n+1}{2 n}(2 x)^{1}(3 y)^{2 n}+\binom{2 n+1}{2 n+1}(2 x)^{0}(3 y)^{2 n+1} \\
= & \sum_{j=0}^{2 n+1}\binom{2 n+1}{j}(2 x)^{2 n+1-j}(3 y)^{j}=\sum_{j=0}^{2 n+1}\binom{2 n+1}{j}(2 x)^{j}(3 y)^{2 n+1-j},
\end{aligned}
$$

and

$$
\binom{2 n+1}{j}=\frac{(2 n+1)!}{j!(2 n+1-j)!}
$$

So (1) is the Taylor series for f about $(0,0)$.

3 (13.1)
Find and classify the critical points of the given functions below.
a) $f(x, y)=x^{2}+2 y^{2}-4 x+4 y$
b) $f(x, y)=x \sin (y)$

Solution.

a)

We have

$$
\begin{aligned}
& f_{x}(x, y)=2 x-4=0 \quad \text { if } \quad x=2 \\
& f_{y}(x, y)=4 y+4=0 \quad \text { if } \quad y=-1
\end{aligned}
$$

Critical point is $(2,-1)$. Since $f(x, y) \rightarrow \infty$ as $x^{2}+y^{2} \rightarrow \infty . f$ has a local (and absolute) minimum value at that critical point.
b)

For critical points, we have

$$
f_{x}=\sin (y)=0, \quad f_{y}=x \cos (y)=0
$$

Since $\sin (y)$ and $\cos (y)$ can not vanish at the same point, the only critical points correspond to $x=0$ and $\sin (y)=0$. They are $(0, n \pi)$ for all integers n. All are saddle points.

4 (13.1) Old exam problem.
Let $f(x, y)=\left(x^{2}+y^{2}\right) e^{x}$.
a) Find and classify all critical points.
b) Find the tangent plane of the graph $z=f(x, y)$ at the point $(0,1,1)$.

Solution.

a)
(x, y) is a critical point $\Longleftrightarrow \nabla f(x, y)=(0,0)$. Then

$$
\nabla f(x, y)=\left(e^{x}\left(x^{2}+y^{2}\right)+2 x e^{x}, 2 y e^{x}\right)=(0,0)
$$

This shows

$$
\begin{aligned}
& x^{2}+y^{2}+2 x=0 \quad \text { and } \quad 2 y=0 \\
\Longleftrightarrow & y=0 \quad \text { and } \quad(x+2) x=0 .
\end{aligned}
$$

We have two critical points: $(0,0)$ and $(-2,0)$. The Hessian matrix is

$$
\mathbf{H} f(x, y)=\left(\begin{array}{cc}
e^{x}\left(x^{2}+y^{2}+2 x+2 x+2\right) & 2 y e^{x} \\
2 y e^{x} & 2 e^{x}
\end{array}\right)
$$

Then

$$
\begin{aligned}
\mathbf{H} f(0,0)=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right) & \Longrightarrow \quad \operatorname{det}(\mathbf{H} f(0,0))=4>0 \\
\frac{\partial^{2} f}{\partial x^{2}}(0,0)=2>0 & \Longrightarrow(0,0) \quad \text { is a local minimum point; } \\
\mathbf{H} f(-2,0)=\left(\begin{array}{cc}
-2 e^{-2} & 0 \\
0 & 2 e^{-2}
\end{array}\right) & \Longrightarrow \operatorname{det}(\mathbf{H} f(-2,0))=-4 e^{-4}<0 \\
& \Longrightarrow(-2,0) \quad \text { is a saddle point. }
\end{aligned}
$$

b)

Since this is the case of explicit function, the tangent plane is given by $a\left(x-x_{0}\right)+b(y-$ $\left.y_{0}\right)+c\left(z-z_{0}\right)=0$, where $(a, b, c)=\left(-f_{x},-f_{y}, 1\right)$ and $\left(x_{0}, y_{0}, z_{0}\right)=(0,1,1)$. Thus,

$$
\begin{aligned}
f_{x}=e^{x}\left(x^{2}+y^{2}\right)+2 x e^{x}, & f_{x}(0,1,1)=1 \\
f_{y}=2 y e^{x}, & f_{y}(0,1,1)=2
\end{aligned}
$$

Then the tangent plane is given by

$$
-x-2(y-1)+(z-1)=0 \quad \Longleftrightarrow \quad z=x+2 y-1
$$

5 (13.1, 13.2)
a) Find the maximum and minimum values of $f(x, y)=x y-y^{2}$ on the disk $x^{2}+y^{2} \leq 1$.
b) Find the maximum and minimum values of $f(x, y)=\sin (x) \cos (y)$ on the closed triangular region bounded by the coordinate axes and the line $x+y=2 \pi$.
How do you know that such extreme values must exist in \mathbf{a}) and \mathbf{b})?

Solution.

a)

For critical points:

$$
0=f_{x}(x, y)=y, \quad 0=f_{y}(x, y)=x-2 y
$$

The only critical point is $(0,0)$, which lies inside $x^{2}+y^{2} \leq 1$. We have $f(0,0)=0$.

The boundary of $x^{2}+y^{2} \leq 1$ is the circle $x=\cos (t), y=\sin (t),-\pi \leq t \leq \pi$. On this circle, we have

$$
\begin{aligned}
g(t) & =f(\cos (t), \sin (t))=\cos (t) \sin (t)-\sin ^{2}(t) \\
& =\frac{1}{2}[\sin (2 t)+\cos (2 t)-1], \quad(-\pi \leq t \leq \pi) \\
g(0) & =g(2 \pi)=0 \\
g^{\prime}(t) & =\cos (2 t)-\sin (2 t)
\end{aligned}
$$

The critical points of g satisfy $\cos (2 t)=\sin (2 t)$, that is, $\tan (2 t)=1$, so $2 t= \pm \frac{\pi}{4}$ or $\pm \frac{5 \pi}{4}$, and $t= \pm \frac{\pi}{8}$ or $\pm \frac{5 \pi}{8}$. We have

$$
\begin{aligned}
g\left(\frac{\pi}{8}\right) & =\frac{1}{2 \sqrt{2}}-\frac{1}{2}+\frac{1}{2 \sqrt{2}}=\frac{1}{\sqrt{2}}-\frac{1}{2}>0 \\
g\left(-\frac{\pi}{8}\right) & =-\frac{1}{2 \sqrt{2}}-\frac{1}{2}+\frac{1}{2 \sqrt{2}}=-\frac{1}{2} \\
g\left(\frac{5 \pi}{8}\right) & =-\frac{1}{2 \sqrt{2}}-\frac{1}{2}-\frac{1}{2 \sqrt{2}}=-\frac{1}{\sqrt{2}}-\frac{1}{2}, \\
g\left(-\frac{5 \pi}{8}\right) & =\frac{1}{2 \sqrt{2}}-\frac{1}{2}-\frac{1}{2 \sqrt{2}}=-\frac{1}{2} .
\end{aligned}
$$

Thus the maximum and minimum values of f on the disk $x^{2}+y^{2} \leq 1$ are $\frac{1}{\sqrt{2}}-\frac{1}{2}$ and $-\frac{1}{\sqrt{2}}-\frac{1}{2}$ respectively.
b)

Since $-1 \leq f(x, y)=\sin (x) \cos (y) \leq 1$ everywhere, and since $f\left(\frac{\pi}{2}, 0\right)=1, f\left(\frac{3 \pi}{2}, 0\right)=-1$, and both $\left(\frac{\pi}{2}, 0\right)$ and $\left(\frac{3 \pi}{2}, 0\right)$ belong to the triangle bounded by $x=0, y=0$ and $x+y=2 \pi$, therefore the maximum and minimum values of f over that triangle must be 1 and -1 respectively.

From the function f in \mathbf{a}) and \mathbf{b}), we know that f is continuous on variables x and y whose domain are closed and bounded sets in \mathbb{R}^{2}, then the sufficient conditions for extreme values of Theorem 2 in Section 13.1 assures that the maximum and minimum values must exist.

6 (12.3, 12.6) Old exam problem.
Let

$$
f(x, y):= \begin{cases}\frac{x y^{2}}{x^{2}+y^{2}}, & \text { if }(x, y) \neq(0,0) \\ 0, & \text { if }(x, y)=(0,0)\end{cases}
$$

Show that
a) f is continuous at $(0,0)$,
b) $\frac{\partial f}{\partial x}(0,0)$ and $\frac{\partial f}{\partial y}(0,0)$ exist, but f is not differentiable at $(0,0)$.

Solution.

a)

To show f is continuous at $(0,0)$, we need to show $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=f(0,0)$. Indeed,

$$
\begin{equation*}
|f(x, y)|=\frac{|x| y^{2}}{x^{2}+y^{2}} \tag{2}
\end{equation*}
$$

and note that

$$
|x| y^{2}=|x||y||y| \leq \frac{x^{2}+y^{2}}{2} \cdot|y|
$$

Taking this result into (2), we have

$$
|f(x, y)|=\frac{|x| y^{2}}{x^{2}+y^{2}} \leq \frac{\frac{x^{2}+y^{2}}{2} \cdot|y|}{x^{2}+y^{2}}=\frac{|y|}{2} \rightarrow 0, \quad \text { as } \quad(x, y) \rightarrow(0,0)
$$

This means $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0=f(0,0)$, which shows that f is continuous at $(0,0)$.
b)

By the definition of partial derivatives, we have

$$
\frac{\partial f}{\partial x}(0,0)=\lim _{h \rightarrow 0} \frac{f(h, 0)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{\frac{0}{h^{2}}-0}{h}=0
$$

and similarly, we have

$$
\frac{\partial f}{\partial y}(0,0)=0
$$

If we want to show f is differentiable at $(0,0)$, by definition, we need to show

$$
\lim _{(h, k) \rightarrow(0,0)} \frac{f(0+h, 0+k)-f(0,0)-h f_{x}(0,0)-k f_{y}(0,0)}{\sqrt{h^{2}+k^{2}}}=0
$$

However, by $f(0,0)=0, f_{x}(0,0)=0$ and $f_{y}(0,0)=0$, we get

$$
\begin{aligned}
& \lim _{(h, k) \rightarrow(0,0)} \frac{f(0+h, 0+k)-f(0,0)-h f_{x}(0,0)-k f_{y}(0,0)}{\sqrt{h^{2}+k^{2}}} \\
= & \lim _{(h, k) \rightarrow(0,0)} \frac{\frac{h k^{2}}{h^{2}+k^{2}}}{\sqrt{h^{2}+k^{2}}}=\lim _{\substack{k \rightarrow 0 \\
h=k}} \frac{k^{3}}{2^{\frac{3}{2}}|k|^{3}}= \pm 2^{-\frac{3}{2}} \neq 0 .
\end{aligned}
$$

This means f is not differentiable at $(0,0)$.

7 (inverse function theorem)
Consider the following system of equations

$$
u=x \cos (y) \quad \text { and } \quad v=2 x \sin (y)
$$

Show that near x_{0}, y_{0} with $x_{0} \neq 0,(x, y)$ can be expressed as differentiable function of (u, v) and compute $\frac{\partial x}{\partial u}$ and $\frac{\partial x}{\partial v}$ near $\left(x_{0}, y_{0}\right)$.
Hint: check the conditions before using the inverse function theorem.

Solution.

Let $\mathbf{F}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ to be $\mathbf{F}(x, y)=(u, v)=(x \cos (y), 2 x \sin (y))$. To apply inverse function theorem to \mathbf{F}, we need to check two things.

1. $\mathbf{F}(x, y)$ is C^{1} near $\left(x_{0}, y_{0}\right)$.

Note that

$$
\frac{\partial u}{\partial x}=\cos (y), \quad \frac{\partial u}{\partial y}=-x \sin (y), \quad \frac{\partial v}{\partial x}=2 \sin (y), \quad \frac{\partial v}{\partial y}=2 x \cos (y)
$$

Clearly, all these partial derivatives exist and continuous everywhere. So the function is C^{1} everywhere (in particular near $\left(x_{0}, y_{0}\right)$).
2. $\operatorname{det} D \mathbf{F}\left(x_{0}, y_{0}\right) \neq 0$.

$$
\operatorname{det} D \mathbf{F}\left(x_{0}, y_{0}\right)=\left.\operatorname{det}\left(\begin{array}{ll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array}\right)\right|_{\left(x_{0}, y_{0}\right)}=\left|\begin{array}{cc}
\cos \left(y_{0}\right) & -x_{0} \sin \left(y_{0}\right) \\
2 \sin \left(y_{0}\right) & 2 x_{0} \cos \left(y_{0}\right)
\end{array}\right|=x_{0} \neq 0 .
$$

Hence by the inverse function theorem, an C^{1} inverse $\mathbf{F}^{-1}(u, v)=(x, y)$ exists and (x, y) can be expressed as differentiable function of (u, v).

So next, let us compute $\frac{\partial x}{\partial u}$ and $\frac{\partial x}{\partial v}$ at $\left(u_{0}, v_{0}\right)$.

$$
\begin{aligned}
\left(\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right)=\left(\begin{array}{ll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array}\right)^{-1} & =\left(\begin{array}{cc}
\cos \left(y_{0}\right) & -x_{0} \sin \left(y_{0}\right) \\
2 \sin \left(y_{0}\right) & 2 x_{0} \cos \left(y_{0}\right)
\end{array}\right)^{-1} \\
& =\frac{1}{2 x_{0}}\left(\begin{array}{cc}
2 x_{0} \cos \left(y_{0}\right) & x_{0} \sin \left(y_{0}\right) \\
-2 \sin \left(y_{0}\right) & \cos \left(y_{0}\right)
\end{array}\right)
\end{aligned}
$$

Hence, $\frac{\partial x}{\partial u}\left(u_{0}, v_{0}\right)=\cos \left(y_{0}\right)$ and $\frac{\partial x}{\partial v}\left(u_{0}, v_{0}\right)=\frac{1}{2} \sin \left(y_{0}\right)$.

8 (implicit function theorem)
Show that the equations

$$
\left\{\begin{array}{l}
x y^{2}+z u+v^{2}=3, \tag{3}\\
x^{3} z+2 y-u v=2, \\
x u+y v-x y z=1,
\end{array}\right.
$$

can be solved for x, y, and z as functions of u and v near the point P_{0} where $(x, y, z, u, v)=(1,1,1,1,1)$, and find $\frac{\partial y}{\partial u}$ at $(u, v)=(1,1)$.
Hint: check the conditions before using the implicit function theorem.

Solution.

Define $\mathbf{F}: \mathbb{R}^{5} \rightarrow \mathbb{R}^{3}$ to be

$$
\mathbf{F}(x, y, z, u, v)=\left(x y^{2}+z u+v^{2}-3, x^{3} z+2 y-u v-2, x u+y v-x y z-1\right)=\left(f_{1}, f_{2}, f_{3}\right)
$$

Step 1: Check \mathbf{F} is \mathbf{C}^{1} near $(1,1,1,1,1)$.
A quick differentiation yields

$$
\begin{aligned}
& \frac{\partial f_{1}}{\partial x}=y^{2}, \quad \frac{\partial f_{1}}{\partial y}=2 x y, \quad \frac{\partial f_{1}}{\partial z}=u, \quad \frac{\partial f_{1}}{\partial u}=z, \quad \frac{\partial f_{1}}{\partial v}=2 v \\
& \frac{\partial f_{2}}{\partial x}=3 x^{2} z, \quad \frac{\partial f_{2}}{\partial y}=2, \quad \frac{\partial f_{2}}{\partial z}=x^{3}, \quad \frac{\partial f_{2}}{\partial u}=-v, \quad \frac{\partial f_{2}}{\partial v}=-u \\
& \frac{\partial f_{3}}{\partial x}=u-y z, \quad \frac{\partial f_{3}}{\partial y}=v-x z, \quad \frac{\partial f_{3}}{\partial z}=-x y, \quad \frac{\partial f_{3}}{\partial u}=x, \quad \frac{\partial f_{3}}{\partial v}=y
\end{aligned}
$$

Since all partial derivatives exist and continuous everywhere, \mathbf{F} is C^{1} everywhere (in particular near $(1,1,1,1,1))$.

Step 2: Check $\mathbf{F}\left(P_{0}\right)=\mathbf{0}$.
Clearly $\mathbf{F}(1,1,1,1,1)=(0,0,0)$.

Step 3: Check $\operatorname{det} \frac{\partial\left(f_{1}, f_{2}, f_{3}\right)}{\partial(x, y, z)}\left(P_{0}\right) \neq 0$.

$$
\begin{aligned}
\operatorname{det} \frac{\partial\left(f_{1}, f_{2}, f_{3}\right)}{\partial(x, y, z)}\left(P_{0}\right) & =\left.\operatorname{det}\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x} & \frac{\partial f_{1}}{\partial y} & \frac{\partial f_{1}}{\partial z} \\
\frac{\partial f_{2}}{\partial x} & \frac{\partial f_{2}}{\partial y} & \frac{\partial f_{2}}{\partial z} \\
\frac{\partial f_{3}}{\partial x} & \frac{\partial f_{3}}{\partial y} & \frac{\partial f_{3}}{\partial z}
\end{array}\right)\right|_{(1,1,1,1,1)} \\
& =\left.\operatorname{det}\left(\begin{array}{ccc}
y^{2} & 2 x y & u \\
3 x^{2} z & 2 & x^{3} \\
u-y z & v-x z & -x y
\end{array}\right)\right|_{(1,1,1,1,1)} \\
& =\left|\begin{array}{ccc}
1 & 2 & 1 \\
3 & 2 & 1 \\
0 & 0 & -1
\end{array}\right|=4 \neq 0
\end{aligned}
$$

Hence, by the implicit function theorem, (x, y, z) can be expressed as a differentiable function of (u, v) near $(1,1,1,1,1)$.

To find $\frac{\partial y}{\partial u}$ (denote by y_{u}), we differentiate both sides of each equation in (3) with respect to u (i.e. implicit differentiation) to get

$$
\left\{\begin{array} { l }
{ x y ^ { 2 } + z u + v ^ { 2 } = 3 , } \\
{ x ^ { 3 } z + 2 y - u v = 2 , } \\
{ x u + y v - x y z = 1 , }
\end{array} \quad \Longrightarrow \quad \left\{\begin{array}{l}
y^{2} x_{u}+2 x y y_{u}+u z_{u}+z=0 \\
3 x^{2} z x_{u}+2 y_{u}+x^{3} z_{u}-v=0 \\
(u-y z) x_{u}+(v-x z) y_{u}-x y z_{u}+x=0
\end{array}\right.\right.
$$

Taking ($1,1,1,1,1$) into the above system, we get

$$
\left\{\begin{array}{l}
x_{u}+2 y_{u}+z_{u}=-1 \\
3 x_{u}+2 y_{u}+z_{u}=1 \\
-z_{u}=-1
\end{array}\right.
$$

which gives,

$$
x_{u}\left(P_{0}\right)=1, \quad y_{u}\left(P_{0}\right)=-\frac{3}{2}, \quad z_{u}\left(P_{0}\right)=1 \quad \Longrightarrow \quad \frac{\partial y}{\partial u}\left(P_{0}\right)=-\frac{3}{2}
$$

