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. . . . Exercise set 6: Solutions
Norwegian University of Science

and Technology
Department of Mathematical
Sciences

(12.4)

Let u and v be two twice continuously differentiable real-valued functions defined on
an open subset U C R? which satisfy the so-called Cauchy-Riemann equations

ou ov
%(l‘ay) - @(xvy)v
ou ov

@($, y) = _%(l‘a y)

for all (z,y) € U. Show that w and v are harmonic in U. That is, satisfy the
2-dimensional Laplace equation A(-) = 0 where A = 53722 + (%227 inU.

Hint: it will be necessary to use and refer to a certain theorem.

Solution.

Since u and v are given to be twice continuously differentiable, we have from the theorem on

. . . . 2 2 o
equality of mixed partial derivatives, that a@gy = 625; and similarly for u. From % = g—z

and %Z = _(%7 differentiating the first equality with respect to z and the second with
respect to y, we therefore get

o o (o
ox2  Oy?  Oxzdy N

This shows that u is harmonic, and the argument for v being harmonic is similar.

(12.9)

Find the Taylor series for the given functions near the indicated points.
a) f: RQ - Ra (:E?y) = 2‘7;2 - Ty — y2 — bz — 3y+57 (x07y0) = (1772)
b) f: R? = R, (x,y) — sin(2x + 3y),  (x0,%0) = (0,0)

Solution.

a)
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Exercise set 6: Solutions

We have
1,-2) =5, fu(1,-2) = (4z—y— =0,
-2 =5, L(1,-2)=(r—y=6)] =0
fy(1,=2) = (—x — 2y — 3)\(17_2) —0,

fxx(]-a _2) = 47 fa:y(lv _2) = _1> fyy(lu _2) = -2

This function is a quadratic polynomial, so the third order partial derivative and above are
all equal to 0. Thus, the Taylor series for f about (1, —2) is given by

flx,y) =f(1,-2) + (z — 1) fa(1, =2) + (y + 2) fy (1, —2)
F o[ = 12 el 2) 20— D+ 2 ey (1, -2 + (0 + 2 Fy (1, -2)]
=5+ %[4(:3 —1)2=2(z — 1)(y+2) — 2y + 2)°]
=542z -1 (z-1D(y+2) - (y+2)>

b)

Recall the Taylor series for sin(z) at z =0 is

00 " 2n+1
sin(z) = ;::o(_ ) 2n+1)

Thus, to our f, we have

Jlon) =sinGe i) = 2 O
00 —1)n 2n+1 o+ 1)! , -
:z_: (2(n +)1)! Z_: j!(én—i- 1 zj)!(%”)](?’y)2 o

0 2n+1 2n+1—
Sy s O as, 1)
=0 =0 J'12n+1—j)!

where we have used the binomial theorem in the second last step that

:<2no+ 1) (22)*" 1 (3y)" + <2n1+ 1) (20)*"(3y)" + <2n2+ 1) (22)" 7 (3y)* +

v (2”2;5 1) (22)! (39)"" + (2" N 1) (22)° (39)"*"

2n+1
2n+1 2n+1
2n+1 - - 2 1 ~ A
_ Z < + ) )2n+1—](3y)3 — Z ( n+ )(290)](31/)2"“_],
— J
7=0

and

<2n + 1> (2n+1)!
I

j 2n+1— )

So (1) is the Taylor series for f about (0,0).
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(13.1)

Find and classify the critical points of the given functions below.
a) flz,y) = 2° +2y° — 4o + 4y
b) f(z,y) = zsin(y)

Solution.
a)
We have

fe(z,y) =20 —4=0 if z=2
fylz,y) =4y +4=0 if y=-1.

Critical point is (2, —1). Since f(x,y) — o0 as #? +y? — oco. f has a local (and absolute)
minimum value at that critical point.

b)
For critical points, we have
fo=sin(y) =0, f, = xcos(y) = 0.

Since sin(y) and cos(y) can not vanish at the same point, the only critical points correspond
to z = 0 and sin(y) = 0. They are (0,n7) for all integers n. All are saddle points.

(13.1) Old exam problem.
Let f(z,y) = (2? + y*)e”.
a) Find and classify all critical points.

b) Find the tangent plane of the graph z = f(x,y) at the point (0,1, 1).

Solution.
a)
(x,y) is a critical point <= Vf(z,y) = (0,0). Then
Vi(z,y) = (e“”(;v2 +9°) + 2ze”, 2yex) = (0,0).
This shows

22 +y?+22=0 and 2y=0
< y=0 and (z+2)z=0.
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We have two critical points: (0,0) and (—2,0). The Hessian matrix is

(B2 + P+ 22+ 22+ 2) 2ye”
Hf(.’IJ,y) - ( 2y€$ 261
Then
2 0
Hf(0,0) = (0 2) —  det (Hf(o,())) =4>0,
0 f . .. .
@(O, 0)=2>0 = (0,0) isa local minimum point;
—26_2 0 4
Hf(-2.0)= | o g2] = det (Hf(-2,0)) = ~4e~* <0,
= (—2,0) is a saddle point.
b)

Since this is the case of explicit function, the tangent plane is given by a(x — z¢) + b(y —
Yo) + c(z — z0) = 0, where (a,b,c) = (= fz, —fy, 1) and (o, %0, 20) = (0,1,1). Thus,

fo=€"(@" +y°) +2ze”,  f2(0,1,1) =1,
fy = 2ye$, fy(07 1a 1) =2

Then the tangent plane is given by

—x—-2y—-1)+(2-1)=0 <<= z=z+2y—1

(13.1, 13.2)

a) Find the maximum and minimum values of f(z,y) = zy—y? on the disk 224y? < 1.

b) Find the maximum and minimum values of f(z,y) = sin(x) cos(y) on the closed
triangular region bounded by the coordinate axes and the line x + y = 2.

How do you know that such extreme values must exist in a) and b)?

Solution.
a)
For critical points:
0=falz,y) =y, 0=fylz,y) =2 —2y.

The only critical point is (0,0), which lies inside 22 + 32 < 1. We have f(0,0) = 0.

February 25, 2022 Page 4 of 9
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The boundary of 2 + y? < 1 is the circle x = cos(t), y = sin(t), —7 <t < 7. On this
circle, we have

g(t) =f(cos(t),sin(t)) = cos(t) sin(t) — sin?(t)
:% [SiH(Qt) + cos(2t) — 1}, (—m <t<m).

9(0) =g(27) =0,
g'(t) =cos(2t) — sin(2t).

The critical points of g satisfy cos(2t) = sin(2t), that is, tan(2t) = 1, so 2t = £7 or :t%r,
and t = &g or j:%’r. We have

(E)_L_LFL_L_}M,

Ng) T2 27202 V2 27
(_z)f_i_l 1
N8 "2 2792 2
a Y S W U SO
Ng)™ " 2r 2 22 V2 2
(_5£)_ 1 _}_ 1 __1
INT8) e 2 28 2

Thus the maximum and minimum values of f on the disk 2% 4+ y? < 1 are % — % and

—\% — % respectively.

b)

Since —1 < f(=,y) = sin(xz) cos(y) < 1 everywhere, and since f(%,0) =1, f(3F,0) = —1,
and both(%,0) and (37”, 0) belong to the triangle bounded by z =0, y = 0 and = +y = 27,
therefore the maximum and minimum values of f over that triangle must be 1 and —1
respectively.

From the function f in a) and b), we know that f is continuous on variables x and y whose
domain are closed and bounded sets in R?, then the sufficient conditions for extreme values
of Theorem 2 in Section 13.1 assures that the maximum and minimum values must exist.

@ (12.3, 12.6) Old exam problem.
Let

2
fz,y) = #yy? if (z,y) # (0,0),

0, if (x,y) = (0,0).
Show that

a) f is continuous at (0,0),

b) %(0,0) and 2—5(0,0) exist, but f is not differentiable at (0, 0).
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(2)

Solution.
a)
To show f is continuous at (0,0), we need to show  lim  f(z,y) = f(0,0). Indeed,
(2,5)—(0,0)
|z]y®
O

and note that

z? + 32

z|y® = |z|lylly| < -yl

2
Taking this result into (2), we have
2 2
ol _ 4yl
2 +y? T a4 y? 2

[f(z,y)| =

—0, as (z,y)— (0,0).

This means  lim  f(z,y) =0 = f(0,0), which shows that f is continuous at (0, 0).

(24)=(0,0)
b)

By the definition of partial derivatives, we have

of o . f(h,0)—f(0,00 . H-0
e L
and similarly, we have
of
—(0,0) =0.
500

If we want to show f is differentiable at (0,0), by definition, we need to show

(h,k)—(0,0) VRZ + 12
However, by f(0,0) =0, f;(0,0) =0 and f,(0,0) = 0, we get
(h,k)—(0,0) Vh? + k2

_hk? 3
= lim A iy L
(hk)=(0.0) VI + K2 k=0 93 |k|3

This means f is not differentiable at (0,0).

= 4273 £0.

(inverse function theorem)

Consider the following system of equations

u=uxcos(y) and v =2zxsin(y).

=0.

Show that near xg,yg with xg # 0, (z,y) can be expressed as differentiable function

of (u,v) and compute % and % near (xo,yo)-

Hint: check the conditions before using the inverse function theorem.
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Solution.

Let F : R? — R? to be F(z,y) = (u,v) = (:z cos(y), 2z sin(y)). To apply inverse function
theorem to F', we need to check two things.

1. F(z,y) is C! near (o, o).

Note that
ou ou _ ov . ov
o cos(y), - —xsin(y), o 2sin(y), oy 22 cos(y).

Clearly, all these partial derivatives exist and continuous everywhere. So the function is
C' everywhere (in particular near (o, o))

2. det DF (g, y0) # 0.

Ou  Ou
det DF(xg,yo) = det (?9’5 gg)
oz Oy

cos(yo) —wosin(yo) |
2sin(yo) 2zocos(yo) | 70
(z0,y0)

Hence by the inverse function theorem, an C! inverse F~!(u,v) = (x,y) exists and (z,y)
can be expressed as differentiable function of (u,v).

So next, let us compute g—ﬁ and % at (ug, vo).

ou  Qu\ 1 - -1
BoomN (B BN Ceostyo) —apsiniyo
% 9Y % %Z 2Sin(y0) 2SUQCOS(yU)
1 <2xgcos(yo) acgsin(yo)>

220 \ —2sin(ye)  cos(yo)

Hence, g—i(uo,vo) = cos(yo) and %(uo,vo) = %sin(yo).

(implicit function theorem)
Show that the equations
zy® + 2u+v? =3,
23242y —uw =2, (3)
zu+yv — axyz = 1,

can be solved for x, y, and z as functions of u and v near the point Py where
(z,y,2z,u,v) =(1,1,1,1,1), and find g—g at (u,v) = (1,1).

Hint: check the conditions before using the implicit function theorem.

Solution.
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Define F : R> — R3 to be
F(z,y,2,u,v) = (zy + 2u+ 10" = 3,2°2 4+ 2y —uv — 2,20 + yv — wyz — 1) = (f1, fo, f3).
Step 1: Check F is C! near (1,1,1,1,1).

A quick differentiation yields

%—2 %—21’ %—u %—z %—20'

or 71 oy Y 9, T ew TP e Y
%:33022 %:2 %zx?’ %:—v %:—u

Ox T Oy T 0z T ou T Ov ’
s _ ., _ s _, _ ofs _ . s __ Ofs _
or Y5 oy VTS G, T T 9 TV By Y

Since all partial derivatives exist and continuous everywhere, F is C! everywhere (in
particular near (1,1,1,1,1)).

Step 2: Check F(F) = 0.

Clearly F(1,1,1,1,1) = (0,0,0).

Step 3: Check det W(Pg) # 0.

0 f 7f2)f3 Jx 0 2
S e A
Y o %Tj 9 )l
y? 2xy U
=det | 322z 2 3
u—yz v—xz —xy/) (1,1,1,1,1)
1 2 1
=13 2 1 |=4+#0
0 0 -1

Hence, by the implicit function theorem, (z,y,2) can be expressed as a differentiable
function of (u,v) near (1,1,1,1,1).

To find % (denote by y,), we differentiate both sides of each equation in (3) with respect
to u (i.e. implicit differentiation) to get

xy2 + zu+ 0% = 3, yzazu + 22yyy + uzy + 2 =0,
22+ 20 —uv =2, — 33;223;'u + 2y, + a:gzu —v =0,
Tu+yv — xyz =1, (u—yz)zy + (v —22)yy — Y2y + = 0.

Taking (1,1,1,1,1) into the above system, we get
Ty + 2Yu + 20 = —1,
3%y + 2Yy + 24 = 1,

— 2y = _]-7
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which gives,

zu(Po) =1, yu(Po>:—§, 2(Po)=1 = (P)=—=.
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