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Exercise set 6: Solutions

1 (12.4)
Let u and v be two twice continuously differentiable real-valued functions defined on
an open subset U ⊂ R2 which satisfy the so-called Cauchy-Riemann equations

∂u

∂x
(x, y) = ∂v

∂y
(x, y),

∂u

∂y
(x, y) = −∂v

∂x
(x, y)

for all (x, y) ∈ U . Show that u and v are harmonic in U . That is, satisfy the
2-dimensional Laplace equation ∆(·) = 0 where ∆ = ∂2

∂x2 + ∂2

∂y2 , in U .

Hint: it will be necessary to use and refer to a certain theorem.

Solution.

Since u and v are given to be twice continuously differentiable, we have from the theorem on
equality of mixed partial derivatives, that ∂2v

∂x∂y = ∂2v
∂y∂x and similarly for u. From ∂u

∂x = ∂v
∂y

and ∂u
∂y = − ∂v

∂x , differentiating the first equality with respect to x and the second with
respect to y, we therefore get

∂2u

∂x2 + ∂2u

∂y2 = ∂2v

∂x∂y
+
(
− ∂2v

∂y∂x

)
= 0.

This shows that u is harmonic, and the argument for v being harmonic is similar.

2 (12.9)
Find the Taylor series for the given functions near the indicated points.
a) f : R2 → R, (x, y) 7→ 2x2 − xy − y2 − 6x− 3y + 5, (x0, y0) = (1,−2)
b) f : R2 → R, (x, y) 7→ sin(2x+ 3y), (x0, y0) = (0, 0)

Solution.

a)
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We have

f(1,−2) = 5, fx(1,−2) = (4x− y − 6)
∣∣∣
(1,−2)

= 0,

fy(1,−2) = (−x− 2y − 3)
∣∣∣
(1,−2)

= 0,

fxx(1,−2) = 4, fxy(1,−2) = −1, fyy(1,−2) = −2.

This function is a quadratic polynomial, so the third order partial derivative and above are
all equal to 0. Thus, the Taylor series for f about (1,−2) is given by

f(x, y) =f(1,−2) + (x− 1)fx(1,−2) + (y + 2)fy(1,−2)

+ 1
2!
[
(x− 1)2fxx(1,−2) + 2(x− 1)(y + 2)fxy(1,−2) + (y + 2)2fyy(1,−2)

]
=5 + 1

2
[
4(x− 1)2 − 2(x− 1)(y + 2)− 2(y + 2)2

]
=5 + 2(x− 1)2 − (x− 1)(y + 2)− (y + 2)2.

b)

Recall the Taylor series for sin(x) at x = 0 is

sin(x) =
∞∑
n=0

(−1)n x2n+1

(2n+ 1)! .

Thus, to our f , we have

f(x, y) = sin(2x+ 3y) =
∞∑
n=0

(−1)n (2x+ 3y)2n+1

(2n+ 1)!

=
∞∑
n=0

(−1)n

(2n+ 1)!

2n+1∑
j=0

(2n+ 1)!
j!(2n+ 1− j)! (2x)j(3y)2n+1−j

=
∞∑
n=0

2n+1∑
j=0

(−1)n2j32n+1−j

j!(2n+ 1− j)! x
jy2n+1−j , (1)

where we have used the binomial theorem in the second last step that

(2x+ 3y)2n+1

=
(

2n+ 1
0

)
(2x)2n+1(3y)0 +

(
2n+ 1

1

)
(2x)2n(3y)1 +

(
2n+ 1

2

)
(2x)2n−1(3y)2 + · · ·

+
(

2n+ 1
2n

)
(2x)1(3y)2n +

(
2n+ 1
2n+ 1

)
(2x)0(3y)2n+1

=
2n+1∑
j=0

(
2n+ 1
j

)
(2x)2n+1−j(3y)j =

2n+1∑
j=0

(
2n+ 1
j

)
(2x)j(3y)2n+1−j ,

and (
2n+ 1
j

)
= (2n+ 1)!
j!(2n+ 1− j)! .

So (1) is the Taylor series for f about (0, 0).
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3 (13.1)
Find and classify the critical points of the given functions below.
a) f(x, y) = x2 + 2y2 − 4x+ 4y
b) f(x, y) = x sin(y)

Solution.

a)

We have

fx(x, y) =2x− 4 = 0 if x = 2;
fy(x, y) =4y + 4 = 0 if y = −1.

Critical point is (2,−1). Since f(x, y)→∞ as x2 + y2 →∞. f has a local (and absolute)
minimum value at that critical point.

b)

For critical points, we have

fx = sin(y) = 0, fy = x cos(y) = 0.

Since sin(y) and cos(y) can not vanish at the same point, the only critical points correspond
to x = 0 and sin(y) = 0. They are (0, nπ) for all integers n. All are saddle points.

4 (13.1) Old exam problem.
Let f(x, y) = (x2 + y2)ex.
a) Find and classify all critical points.
b) Find the tangent plane of the graph z = f(x, y) at the point (0, 1, 1).

Solution.

a)

(x, y) is a critical point ⇐⇒ ∇f(x, y) = (0, 0). Then

∇f(x, y) =
(
ex(x2 + y2) + 2xex, 2yex

)
= (0, 0).

This shows

x2 + y2 + 2x = 0 and 2y = 0
⇐⇒ y = 0 and (x+ 2)x = 0.
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We have two critical points: (0, 0) and (−2, 0). The Hessian matrix is

Hf(x, y) =
(
ex(x2 + y2 + 2x+ 2x+ 2) 2yex

2yex 2ex

)

Then

Hf(0, 0) =
(

2 0
0 2

)
=⇒ det

(
Hf(0, 0)

)
= 4 > 0,

∂2f

∂x2 (0, 0) = 2 > 0 =⇒ (0, 0) is a local minimum point;

Hf(−2, 0) =
(
−2e−2 0

0 2e−2

)
=⇒ det

(
Hf(−2, 0)

)
= −4e−4 < 0,

=⇒ (−2, 0) is a saddle point.

b)

Since this is the case of explicit function, the tangent plane is given by a(x− x0) + b(y −
y0) + c(z − z0) = 0, where (a, b, c) = (−fx,−fy, 1) and (x0, y0, z0) = (0, 1, 1). Thus,

fx = ex(x2 + y2) + 2xex, fx(0, 1, 1) = 1,
fy = 2yex, fy(0, 1, 1) = 2.

Then the tangent plane is given by

−x− 2(y − 1) + (z − 1) = 0 ⇐⇒ z = x+ 2y − 1.

5 (13.1, 13.2)
a) Find the maximum and minimum values of f(x, y) = xy−y2 on the disk x2+y2 ≤ 1.
b) Find the maximum and minimum values of f(x, y) = sin(x) cos(y) on the closed
triangular region bounded by the coordinate axes and the line x+ y = 2π.
How do you know that such extreme values must exist in a) and b)?

Solution.

a)

For critical points:

0 = fx(x, y) = y, 0 = fy(x, y) = x− 2y.

The only critical point is (0, 0), which lies inside x2 + y2 ≤ 1. We have f(0, 0) = 0.
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The boundary of x2 + y2 ≤ 1 is the circle x = cos(t), y = sin(t), −π ≤ t ≤ π. On this
circle, we have

g(t) =f
(

cos(t), sin(t)
)

= cos(t) sin(t)− sin2(t)

=1
2
[

sin(2t) + cos(2t)− 1
]
, (−π ≤ t ≤ π).

g(0) =g(2π) = 0,
g′(t) = cos(2t)− sin(2t).

The critical points of g satisfy cos(2t) = sin(2t), that is, tan(2t) = 1, so 2t = ±π
4 or ±5π

4 ,
and t = ±π

8 or ±5π
8 . We have

g
(π

8
)

= 1
2
√

2
− 1

2 + 1
2
√

2
= 1√

2
− 1

2 > 0,

g
(
− π

8
)

=− 1
2
√

2
− 1

2 + 1
2
√

2
= −1

2 ,

g
(5π

8
)

=− 1
2
√

2
− 1

2 −
1

2
√

2
= − 1√

2
− 1

2 ,

g
(
− 5π

8
)

= 1
2
√

2
− 1

2 −
1

2
√

2
= −1

2 .

Thus the maximum and minimum values of f on the disk x2 + y2 ≤ 1 are 1√
2 −

1
2 and

− 1√
2 −

1
2 respectively.

b)

Since −1 ≤ f(x, y) = sin(x) cos(y) ≤ 1 everywhere, and since f(π2 , 0) = 1, f(3π
2 , 0) = −1,

and both(π2 , 0) and (3π
2 , 0) belong to the triangle bounded by x = 0, y = 0 and x+ y = 2π,

therefore the maximum and minimum values of f over that triangle must be 1 and −1
respectively.

From the function f in a) and b), we know that f is continuous on variables x and y whose
domain are closed and bounded sets in R2, then the sufficient conditions for extreme values
of Theorem 2 in Section 13.1 assures that the maximum and minimum values must exist.

6 (12.3, 12.6) Old exam problem.
Let

f(x, y) :=


xy2

x2 + y2 , if (x, y) 6= (0, 0),

0, if (x, y) = (0, 0).

Show that
a) f is continuous at (0, 0),
b) ∂f

∂x (0, 0) and ∂f
∂y (0, 0) exist, but f is not differentiable at (0, 0).
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Solution.

a)

To show f is continuous at (0, 0), we need to show lim
(x,y)→(0,0)

f(x, y) = f(0, 0). Indeed,

|f(x, y)| = |x|y2

x2 + y2 , (2)

and note that

|x|y2 = |x||y||y| ≤ x2 + y2

2 · |y|.

Taking this result into (2), we have

|f(x, y)| = |x|y2

x2 + y2 ≤
x2+y2

2 · |y|
x2 + y2 = |y|2 → 0, as (x, y)→ (0, 0).

This means lim
(x,y)→(0,0)

f(x, y) = 0 = f(0, 0), which shows that f is continuous at (0, 0).

b)

By the definition of partial derivatives, we have

∂f

∂x
(0, 0) = lim

h→0

f(h, 0)− f(0, 0)
h

= lim
h→0

0
h2 − 0
h

= 0,

and similarly, we have
∂f

∂y
(0, 0) = 0.

If we want to show f is differentiable at (0, 0), by definition, we need to show

lim
(h,k)→(0,0)

f(0 + h, 0 + k)− f(0, 0)− hfx(0, 0)− kfy(0, 0)√
h2 + k2

= 0.

However, by f(0, 0) = 0, fx(0, 0) = 0 and fy(0, 0) = 0, we get

lim
(h,k)→(0,0)

f(0 + h, 0 + k)− f(0, 0)− hfx(0, 0)− kfy(0, 0)√
h2 + k2

= lim
(h,k)→(0,0)

hk2

h2+k2√
h2 + k2

= lim
k→0
h=k

k3

2
3
2 |k|3

= ±2−
3
2 6= 0.

This means f is not differentiable at (0, 0).

7 (inverse function theorem)
Consider the following system of equations

u = x cos(y) and v = 2x sin(y).

Show that near x0, y0 with x0 6= 0, (x, y) can be expressed as differentiable function
of (u, v) and compute ∂x

∂u and ∂x
∂v near (x0, y0).

Hint: check the conditions before using the inverse function theorem.
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Solution.

Let F : R2 → R2 to be F(x, y) = (u, v) =
(
x cos(y), 2x sin(y)

)
. To apply inverse function

theorem to F, we need to check two things.

1. F(x, y) is C1 near (x0, y0).

Note that

∂u

∂x
= cos(y), ∂u

∂y
= −x sin(y), ∂v

∂x
= 2 sin(y), ∂v

∂y
= 2x cos(y).

Clearly, all these partial derivatives exist and continuous everywhere. So the function is
C1 everywhere (in particular near (x0, y0)).

2. detDF(x0, y0) 6= 0.

detDF(x0, y0) = det
(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

) ∣∣∣∣∣
(x0,y0)

=
∣∣∣∣∣ cos(y0) −x0 sin(y0)

2 sin(y0) 2x0 cos(y0)

∣∣∣∣∣ = x0 6= 0.

Hence by the inverse function theorem, an C1 inverse F−1(u, v) = (x, y) exists and (x, y)
can be expressed as differentiable function of (u, v).

So next, let us compute ∂x
∂u and ∂x

∂v at (u0, v0).(
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)
=
(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)−1

=
(

cos(y0) −x0 sin(y0)
2 sin(y0) 2x0 cos(y0)

)−1

= 1
2x0

(
2x0 cos(y0) x0 sin(y0)
−2 sin(y0) cos(y0)

)
.

Hence, ∂x∂u(u0, v0) = cos(y0) and ∂x
∂v (u0, v0) = 1

2 sin(y0).

8 (implicit function theorem)
Show that the equations 

xy2 + zu+ v2 = 3,
x3z + 2y − uv = 2,
xu+ yv − xyz = 1,

(3)

can be solved for x, y, and z as functions of u and v near the point P0 where
(x, y, z, u, v) = (1, 1, 1, 1, 1), and find ∂y

∂u at (u, v) = (1, 1).
Hint: check the conditions before using the implicit function theorem.

Solution.
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Define F : R5 → R3 to be

F(x, y, z, u, v) = (xy2 + zu+ v2 − 3, x3z + 2y − uv − 2, xu+ yv − xyz − 1) = (f1, f2, f3).

Step 1: Check F is C1 near (1,1,1,1,1).

A quick differentiation yields
∂f1
∂x

= y2,
∂f1
∂y

= 2xy, ∂f1
∂z

= u,
∂f1
∂u

= z,
∂f1
∂v

= 2v;

∂f2
∂x

= 3x2z,
∂f2
∂y

= 2, ∂f2
∂z

= x3,
∂f2
∂u

= −v, ∂f2
∂v

= −u;

∂f3
∂x

= u− yz, ∂f3
∂y

= v − xz, ∂f3
∂z

= −xy, ∂f3
∂u

= x,
∂f3
∂v

= y.

Since all partial derivatives exist and continuous everywhere, F is C1 everywhere (in
particular near (1, 1, 1, 1, 1)).

Step 2: Check F(P0) = 0.

Clearly F(1, 1, 1, 1, 1) = (0, 0, 0).

Step 3: Check det ∂(f1,f2,f3)
∂(x,y,z) (P0) 6= 0.

det ∂(f1, f2, f3)
∂(x, y, z) (P0) = det


∂f1
∂x

∂f1
∂y

∂f1
∂z

∂f2
∂x

∂f2
∂y

∂f2
∂z

∂f3
∂x

∂f3
∂y

∂f3
∂z


∣∣∣∣∣
(1,1,1,1,1)

= det

 y2 2xy u
3x2z 2 x3

u− yz v − xz −xy

 ∣∣∣∣∣
(1,1,1,1,1)

=

∣∣∣∣∣∣∣
1 2 1
3 2 1
0 0 −1

∣∣∣∣∣∣∣ = 4 6= 0.

Hence, by the implicit function theorem, (x, y, z) can be expressed as a differentiable
function of (u, v) near (1, 1, 1, 1, 1).

To find ∂y
∂u (denote by yu), we differentiate both sides of each equation in (3) with respect

to u (i.e. implicit differentiation) to get
xy2 + zu+ v2 = 3,
x3z + 2y − uv = 2,
xu+ yv − xyz = 1,

=⇒


y2xu + 2xyyu + uzu + z = 0,
3x2zxu + 2yu + x3zu − v = 0,
(u− yz)xu + (v − xz)yu − xyzu + x = 0.

Taking (1, 1, 1, 1, 1) into the above system, we get
xu + 2yu + zu = −1,
3xu + 2yu + zu = 1,
− zu = −1,
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which gives,

xu(P0) = 1, yu(P0) = −3
2 , zu(P0) = 1 =⇒ ∂y

∂u
(P0) = −3

2 .
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