Norwegian University of Science and Technology
Department of Mathematical
Sciences

1 (12.4)
Find all the second partial derivatives of the given functions below.
a) $f: \mathbb{R}^{2} \rightarrow \mathbb{R},(x, y) \mapsto x^{2}\left(1+y^{2}\right)$
b) $g:\left\{(x, y) \in \mathbb{R}^{2} \left\lvert\, x y \neq-\frac{\pi}{2}+2 k \pi\right., k \in \mathbb{Z}\right\} \rightarrow \mathbb{R},(x, y) \mapsto \ln (1+\sin (x y))$

Solution.

a)

Direct computations shows that

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=2 x\left(1+y^{2}\right), \quad \frac{\partial f}{\partial y}=2 x^{2} y, \quad \frac{\partial^{2} f}{\partial x^{2}}=2\left(1+y^{2}\right), \quad \frac{\partial^{2} f}{\partial y^{2}}=2 x^{2}, \\
& \frac{\partial^{2} f}{\partial x \partial y}=4 x y=\frac{\partial^{2} f}{\partial y \partial x} .
\end{aligned}
$$

b)

Direct computations shows that

$$
\begin{aligned}
\frac{\partial g}{\partial x} & =\frac{y \cos (x y)}{1+\sin (x y)}, \quad \frac{\partial g}{\partial y}=\frac{x \cos (x y)}{1+\sin (x y)}, \\
\frac{\partial^{2} g}{\partial x^{2}} & =\frac{(1+\sin (x y))\left(-y^{2} \sin (x y)\right)-(y \cos (x y))(y \cos (x y))}{(1+\sin (x y))^{2}}=-\frac{y^{2}}{1+\sin (x y)}, \\
\frac{\partial^{2} g}{\partial y^{2}} & =-\frac{x^{2}}{1+\sin (x y)} \quad(\text { by symmetry }), \\
\frac{\partial^{2} g}{\partial x \partial y} & =\frac{(1+\sin (x y))(\cos (x y)-x y \sin (x y))-(y \cos (x y))(x \cos (x y))}{(1+\sin (x y))^{2}} \\
& =\frac{\cos (x y)-x y}{1+\sin (x y)}=\frac{\partial^{2} g}{\partial y \partial x} .
\end{aligned}
$$

2 (12.7)
Use definition to find the directional derivative of $f(x, y)=x^{2}+x y$ in the direction $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ at point $(1,2)$.

Solution.

By definition, along the direction $\mathbf{u}=(u, v)=\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$, at point $(a, b)=(1,2)$, we have

$$
\begin{aligned}
D_{\mathbf{u}} f(1,2) & =\lim _{h \rightarrow 0+} \frac{f(a+h u, b+h v)-f(a, b)}{h} \\
& =\lim _{h \rightarrow 0+} \frac{f\left(1+\frac{\sqrt{2}}{2} h, 2+\frac{\sqrt{2}}{2} h\right)-f(1,2)}{h} \\
& =\lim _{h \rightarrow 0+} \frac{\left(1+\frac{\sqrt{2}}{2} h\right)^{2}+\left(1+\frac{\sqrt{2}}{2} h\right)\left(2+\frac{\sqrt{2}}{2} h\right)-3}{h} \\
& =\lim _{h \rightarrow 0+} \frac{1+\sqrt{2} h+\frac{h^{2}}{2}+2+\frac{3 \sqrt{2}}{2} h+\frac{h^{2}}{2}-3}{h} \\
& =\lim _{h \rightarrow 0+} \frac{\frac{5 \sqrt{2}}{2} h+h^{2}}{h} \\
& =\frac{5 \sqrt{2}}{2} .
\end{aligned}
$$

3 (12.9)
Find the Taylor series for the given functions near the indicated points.
a) $f: \mathbb{R}^{2} \rightarrow \mathbb{R},(x, y) \mapsto x^{2}+x y+y^{3}, \quad(1,-1)$
b) $f: \mathbb{R}^{2} \rightarrow \mathbb{R},(x, y) \mapsto e^{x^{2}+y^{2}}, \quad(0,0)$

Solution.

a)

Let $u=x-1, v=y+1$. Thus,

$$
\begin{aligned}
f(x, y) & =x^{2}+x y+y^{3} \\
& =(u+1)^{2}+(u+1)(v-1)+(v-1)^{3} \\
& =1+2 u+u^{2}-1+v-u+u v+v^{3}-3 v^{2}+3 v-1 \\
& =-1+u+4 v+u^{2}+u v-3 v^{2}+v^{3} \\
& =-1+(x-1)+4(y+1)+(x-1)^{2}+(x-1)(y+1)-3(y+1)^{2}+(y+1)^{3} .
\end{aligned}
$$

This is the Taylor series for f about $(1,-1)$.
b)

Recall that the Taylor series for e^{x} about 0 is $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$. Then we have

$$
\begin{align*}
f(x, y) & =e^{x^{2}+y^{2}} \\
& =\sum_{n=0}^{\infty} \frac{\left(x^{2}+y^{2}\right)^{n}}{n!} \\
& =\sum_{n=0}^{\infty} \frac{1}{n!} \sum_{j=0}^{n} \frac{n!}{j!(n-j)!} x^{2 j} y^{2 n-2 j} \\
& =\sum_{n=0}^{\infty} \sum_{j=0}^{n} \frac{x^{2 j} y^{2 n-2 j}}{j!(n-j)!}, \tag{1}
\end{align*}
$$

where we have used the binomial theorem in the second last step that

$$
\begin{aligned}
& \left(x^{2}+y^{2}\right)^{n} \\
= & \binom{n}{0} x^{2 n} y^{0}+\binom{n}{1} x^{2 n-2} y^{2}+\binom{n}{2} x^{2 n-4} y^{4}+\cdots+\binom{n}{n-1} x^{2} y^{2 n-2}+\binom{n}{n} x^{0} y^{2 n} \\
= & \sum_{j=0}^{n}\binom{n}{j} x^{2 n-2 j} y^{2 j}=\sum_{j=0}^{n}\binom{n}{j} x^{2 j} y^{2 n-2 j} .
\end{aligned}
$$

Thus, (1) is the Taylor series for f about $(0,0)$.

4 (12.8)
If $x=u^{3}+v^{3}$ and $y=u v-v^{2}$ are solved for u and v in terms of x and y, evaluate

$$
\frac{\partial u}{\partial x}, \quad \frac{\partial u}{\partial y}, \quad \frac{\partial v}{\partial x}, \quad \frac{\partial v}{\partial y}, \quad \text { and } \quad \frac{\partial(u, v)}{\partial(x, y)}
$$

at the point $(u, v)=(1,1)$.

Solution.

From the expression of x and y, we know that u, v are the functions of variables x, y. Taking partial derivative with respect to x to the given equations, we have

$$
\begin{aligned}
& 1=3 u^{2} \frac{\partial u}{\partial x}+3 v^{2} \frac{\partial v}{\partial x} \\
& 0=v \frac{\partial u}{\partial x}+(u-2 v) \frac{\partial v}{\partial x}
\end{aligned}
$$

At $u=v=1$, we have

$$
\begin{aligned}
& 1=3 \frac{\partial u}{\partial x}+3 \frac{\partial v}{\partial x} \\
& 0=\frac{\partial u}{\partial x}-\frac{\partial v}{\partial x}
\end{aligned}
$$

Thus, $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial x}=\frac{1}{6}$.
Similarly, taking partial derivative with respect to y to the given equations and putting $u=v=1$, we have

$$
\begin{aligned}
& 0=3 \frac{\partial u}{\partial y}+3 \frac{\partial v}{\partial y}, \\
& 1=\frac{\partial u}{\partial y}-\frac{\partial v}{\partial y} .
\end{aligned}
$$

Thus, $\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial y}=\frac{1}{2}$.
Finally,

$$
\left.\frac{\partial(u, v)}{\partial(x, y)}\right|_{(u, v)=(1,1)}=\left|\begin{array}{ll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array}\right|=-\frac{1}{6} .
$$

5 (12.7)
Let $f(x, y, z)=x^{3}-x y^{2}-z, P_{0}=(1,1,0)$.
a) In what direction at P_{0} does f increase most rapidly? What is the rate of increase of f in that direction?
b) In what direction at P_{0} does f decrease most rapidly? What is the rate of decrease of f in that direction?

Solution.

The gradient of f is given by

$$
\nabla f(x, y, z)=\left(3 x^{2}-y^{2},-2 x y,-1\right), \quad \nabla f(1,1,0)=(2,-2,-1) .
$$

a)
f increases most rapidly at P_{0} along the direction $\nabla f(1,1,0)$, and the rate of increase is

$$
|\nabla f(1,1,0)|=\sqrt{2^{2}+(-2)^{2}+1}=3 .
$$

b)
f decreases most rapidly at P_{0} along the direction $-\nabla f(1,1,0)$, and the rate of decrease is

$$
-|\nabla f(1,1,0)|=-\sqrt{2^{2}+(-2)^{2}+1}=-3 .
$$

6 (12.7)
Find an equation of the curve in the $x y$-plane that passes through the point $(1,1)$ and intersects all level curves of the function $f(x, y)=x^{4}+y^{2}$ at right angles.

Solution.

Let the curve be $y=g(x)$. At (x, y) this curve has normal $\nabla(g(x)-y)=\left(g^{\prime}(x),-1\right)$.
A curve of the family $x^{4}+y^{2}=C$ has normal $\nabla\left(x^{4}+y^{2}\right)=\left(4 x^{3}, 2 y\right)$.
These curves will intersect at right angles if their normals are perpendicular. Thus we require that

$$
0=4 x^{3} g^{\prime}(x)-2 y=4 x^{3} g^{\prime}(x)-2 g(x),
$$

or, equivalently,

$$
\frac{g^{\prime}(x)}{g(x)}=\frac{1}{2 x^{3}} .
$$

Integration gives $\ln (|g(x)|)=-\frac{1}{4 x^{2}}+\ln (|C|)$, or $g(x)=C e^{-\frac{1}{4 x^{2}}}$.
Since the curve passes through $(1,1)$, we must have $1=g(1)=C e^{-\frac{1}{4}}$, so $C=e^{\frac{1}{4}}$.
The required curve is $y=e^{\frac{1}{4}-\frac{1}{4 x^{2}}}$.

7 (12.8)

Evaluate the Jacobian $\frac{\partial(x, y)}{\partial(r, \theta)}$ for the transformation to polar coordinates: $x=$ $r \cos (\theta), y=r \sin (\theta)$. Near what points (r, θ) is the transformation one-to-one (hence invertible)?

Solution.

From the expression of $x=r \cos (\theta), y=r \sin (\theta)$, we have

$$
\frac{\partial(x, y)}{\partial(r, \theta)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}
\end{array}\right|=\left|\begin{array}{cc}
\cos (\theta) & -r \sin (\theta) \\
\sin (\theta) & r \cos (\theta)
\end{array}\right|=r .
$$

The transformation is one-to-one (and hence invertible) near any point where $r \neq 0$, that is, near any point except the origin.

8 (12.4)
Let

$$
F(x, y)= \begin{cases}\frac{2 x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}}, & \text { if }(x, y) \neq(0,0), \\ 0, & \text { if }(x, y)=(0,0) .\end{cases}
$$

a) Calculate $F_{x}(x, y), F_{y}(x, y), F_{x y}(x, y)$, and $F_{y x}(x, y)$ at points $(x, y) \neq(0,0)$. Also calculate these derivatives at $(0,0)$.
b) Observe that $F_{y x}(0,0)=2$ and $F_{x y}(0,0)=-2$. Does this result contradict Schwarz's theorem? Explain why.
Hint: Note the continuity assumption in Schwarz's theorem on the second partial derivatives of the function.

Solution.

a)

Let

$$
f(x, y)= \begin{cases}\frac{2 x y}{x^{2}+y^{2}}, & \text { if }(x, y) \neq(0,0) \\ 0, & \text { if }(x, y)=(0,0)\end{cases}
$$

For $(x, y) \neq(0,0)$, we have

$$
\begin{aligned}
& f_{x}(x, y)=\frac{\left(x^{2}+y^{2}\right) 2 y-2 x y(2 x)}{\left(x^{2}+y^{2}\right)^{2}}=\frac{2 y\left(y^{2}-x^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}, \\
& f_{y}(x, y)=\frac{2 x\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}} \quad \text { (by symmetry). }
\end{aligned}
$$

Let $F(x, y)=\left(x^{2}-y^{2}\right) f(x, y)$. Then we calculate

$$
\begin{align*}
& F_{x}(x, y)=2 x f(x, y)+\left(x^{2}-y^{2}\right) f_{x}(x, y)=2 x f(x, y)-\frac{2 y\left(y^{2}-x^{2}\right)^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
& F_{y}(x, y)=-2 y f(x, y)+\left(x^{2}-y^{2}\right) f_{y}(x, y)=-2 y f(x, y)+\frac{2 x\left(x^{2}-y^{2}\right)^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
& F_{x y}(x, y)=\frac{2\left(x^{6}+9 x^{4} y^{2}-9 x^{2} y^{4}-y^{6}\right)}{\left(x^{2}+y^{2}\right)^{3}}=F_{y x}(x, y) . \tag{2}
\end{align*}
$$

For the values at $(0,0)$, we revert to the definition of derivative to calculate the partials that

$$
\begin{aligned}
& F_{x}(0,0)=\lim _{h \rightarrow 0} \frac{F(h, 0)-F(0,0)}{h}=0=F_{y}(0,0), \\
& F_{x y}(0,0)=\lim _{k \rightarrow 0} \frac{F_{x}(0, k)-F_{x}(0,0)}{k}=\lim _{k \rightarrow 0} \frac{-2 k\left(k^{4}\right)}{k\left(k^{4}\right)}=-2, \\
& F_{y x}(0,0)=\lim _{h \rightarrow 0} \frac{F_{y}(h, 0)-F_{y}(0,0)}{h}=\lim _{h \rightarrow 0} \frac{2 h\left(h^{4}\right)}{h\left(h^{4}\right)}=2 .
\end{aligned}
$$

b) This does not contradict Schwarz's theorem since the partials $F_{y x}$ and $F_{x y}$ are not continuous at $(0,0)$. For instance, from (2), we have

$$
\begin{aligned}
& \lim _{\substack{x \rightarrow 0 \\
y=x}} F_{x y}(x, y)=\lim _{x \rightarrow 0} \frac{2\left(x^{6}+9 x^{6}-9 x^{6}-x^{6}\right)}{\left(x^{2}+x^{2}\right)^{3}}=0, \\
& \lim _{x \rightarrow 0} F_{x y}(x, y)=\lim _{x \rightarrow 0} \frac{2\left(x^{6}\right)}{x^{6}}=2 .
\end{aligned}
$$

When (x, y) tends to $(0,0)$ in the above two different ways, the limits are not equal. So $F_{x y}$ is not continuous at $(0,0)$. We can show $F_{y x}$ is not continuous at $(0,0)$ in the similar way.

$9(12.3,12.6)$

Let

$$
f(x, y)= \begin{cases}\frac{x^{2} y^{2}}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}}, & \text { if }(x, y) \neq(0,0) \\ 0, & \text { if }(x, y)=(0,0)\end{cases}
$$

Show that f is continuous at point $(0,0)$ and the first order partial derivatives $f_{x}(0,0)$, $f_{y}(0,0)$ exist, but f is not differentiable at $(0,0)$.

Solution.

Since

$$
0 \leq \frac{x^{2} y^{2}}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}} \leq \frac{\left(x^{2}+y^{2}\right)^{2}}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}}=\sqrt{x^{2}+y^{2}}
$$

and

$$
\lim _{(x, y) \rightarrow(0,0)} \sqrt{x^{2}+y^{2}}=0
$$

we have

$$
\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0
$$

Since $f(0,0)=0$, we get $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=f(0,0)$, that is, $f(x, y)$ is continuous at point $(0,0)$.

A direct computation shows that

$$
\begin{align*}
& f_{x}(0,0)=\lim _{h \rightarrow 0} \frac{f(0+h, 0)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{0}{h}=0 \tag{3}\\
& f_{y}(0,0)=\lim _{k \rightarrow 0} \frac{f(0,0+k)-f(0,0)}{k}=\lim _{k \rightarrow 0} \frac{0}{k}=0 \tag{4}
\end{align*}
$$

If we want to show f is differentiable at $(0,0)$, by definition, we need to show

$$
\lim _{(h, k) \rightarrow(0,0)} \frac{f(0+h, 0+k)-f(0,0)-h f_{x}(0,0)-k f_{y}(0,0)}{\sqrt{h^{2}+k^{2}}}=0
$$

However, by $f(0,0)=0,(3)$ and (4), we get

$$
\begin{aligned}
& \lim _{(h, k) \rightarrow(0,0)} \frac{f(0+h, 0+k)-f(0,0)-h f_{x}(0,0)-k f_{y}(0,0)}{\sqrt{h^{2}+k^{2}}} \\
= & \lim _{(h, k) \rightarrow(0,0)} \frac{\frac{h^{2} k^{2}}{\left(h^{2}+k^{2}\right)^{\frac{3}{2}}}}{\sqrt{h^{2}+k^{2}}}=\lim _{\substack{h \rightarrow 0 \\
k=h}} \frac{h^{4}}{4 h^{4}}=\frac{1}{4} \neq 0 .
\end{aligned}
$$

This means f is not differentiable at $(0,0)$.
Finally, we have shown that f is continuous at point $(0,0)$ and the first order partial derivatives $f_{x}(0,0), f_{y}(0,0)$ exist, but f is not differentiable at $(0,0)$.

