Norwegian University of Science
Spring 2022

Exercise set 3: Solutions

 and TechnologyDepartment of Mathematical
Sciences

1 Compute $\operatorname{det}(A+B)$ and $\operatorname{det}(A B)$ for

$$
A=\left(\begin{array}{ccc}
-1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Solution.

$$
\operatorname{det}(A+B)=\left|\begin{array}{ccc}
0 & 2 & 2 \\
0 & 3 & 1 \\
0 & 0 & 2
\end{array}\right|=0, \quad \operatorname{det}(A B)=\left|\begin{array}{ccc}
-1 & 1 & 0 \\
0 & 2 & 1 \\
0 & 0 & 1
\end{array}\right|=-2
$$

02 For what values of the parameter λ is the length $s(T)$ of the curve $\mathbf{r}=\left(t, \lambda t^{2}, t^{3}\right)$ $(0 \leq t \leq T)$ given by $s(T)=T+T^{3}$?

Solution.

We have

$$
v=\sqrt{1+(2 \lambda t)^{2}+9 t^{4}}=\sqrt{\left(1+3 t^{2}\right)^{2}} \quad(\text { speed })
$$

if $4 \lambda^{2}=6$, that is, if $\lambda= \pm \sqrt{\frac{3}{2}}$. In this case, the length of the curve is

$$
s(T)=\int_{0}^{T}\left(1+3 t^{2}\right) d t=T+T^{3}
$$

3 Find the Frenet frame $\{\mathbf{T}, \mathbf{N}, \mathbf{B}\}$ for the curve (1) at the point indicated.

$$
\begin{equation*}
\mathbf{r}=t \mathbf{i}+t^{2} \mathbf{j}+t \mathbf{k} \quad \text { at } \quad(1,1,1) \tag{1}
\end{equation*}
$$

where $\mathbf{i}=(1,0,0), \mathbf{j}=(0,1,0), \mathbf{k}=(0,0,1)$.

Solution.

$$
\begin{aligned}
\mathbf{r} & =t \mathbf{i}+t^{2} \mathbf{j}+t \mathbf{k} \\
\mathbf{v} & =\mathbf{i}+2 t \mathbf{j}+\mathbf{k} \\
\mathbf{a} & =2 \mathbf{j} \\
\mathbf{v} \times \mathbf{a} & =-2 \mathbf{i}+2 \mathbf{k}
\end{aligned}
$$

At $(1,1,1)$, where $t=1$, we have

$$
\begin{aligned}
& \mathbf{T}=\frac{\mathbf{v}}{|\mathbf{v}|}=\frac{\mathbf{i}+2 \mathbf{j}+\mathbf{k}}{\sqrt{6}} \\
& \mathbf{B}=\frac{\mathbf{v} \times \mathbf{a}}{|\mathbf{v} \times \mathbf{a}|}=\frac{-(\mathbf{i}-\mathbf{k})}{\sqrt{2}} \\
& \mathbf{N}=\mathbf{B} \times \mathbf{T}=\frac{-(\mathbf{i}-\mathbf{j}+\mathbf{k})}{\sqrt{3}}
\end{aligned}
$$

4 Let \mathbf{u}, \mathbf{v} be two given vectors in a (real) vector space V equipped with an inner product \langle,\rangle_{V}, and let $S(\mathbf{v})$ denote the (real) linear span of \mathbf{v}. The projection of \mathbf{u} on $\mathbf{v}, P_{\mathbf{v}}(\mathbf{u})$, is the point in $S(\mathbf{v})$ closest to \mathbf{u}.
a) Determine a formula for $P_{\mathbf{v}}(\mathbf{u})$.
b) Find $P_{(1,0,-2)}(1,2,3)$.

Solution.

a) We have $\left\langle\mathbf{u}-P_{\mathbf{v}}(\mathbf{u}), \mathbf{v}\right\rangle_{V}=0$. Since $P_{\mathbf{v}}(\mathbf{u}) \in S$ we can write $P_{\mathbf{v}}(\mathbf{u})=a \mathbf{v}$ for some scalar a and it remains to determine a. The previous condition becomes

$$
0=\langle\mathbf{u}-a \mathbf{v}, \mathbf{v}\rangle_{V}=\langle\mathbf{u}, \mathbf{v}\rangle_{V}-a\langle\mathbf{v}, \mathbf{v}\rangle_{V}
$$

which gives $a=\frac{\langle\mathbf{u}, \mathbf{v}\rangle_{V}}{\langle\mathbf{v}, \mathbf{v}\rangle_{V}}$. Thus we get the formula

$$
P_{\mathbf{v}}(\mathbf{u})=\frac{\langle\mathbf{u}, \mathbf{v}\rangle_{V}}{\langle\mathbf{v}, \mathbf{v}\rangle_{V}} \mathbf{v} .
$$

b) Using a) with $V=\mathbb{R}^{3}$ and \langle,\rangle_{V} the usual inner product on \mathbb{R}^{3}, we compute and find

$$
\begin{aligned}
(1,2,3) \cdot(1,0,-2) & =1-6=-5 \\
(1,0,-2) \cdot(1,0,-2) & =1+4=5 \\
P_{(1,0,-2)}(1,2,3) & =-(1,0,-2)=(-1,0,2)
\end{aligned}
$$

5 Specify the natural domain of the function below.

$$
f:(x, y) \mapsto \arcsin (x+y)
$$

Solution.

The domain consists of all points in the strip $-1 \leq x+y \leq 1$.

6 Determine in each case below whether the limit exists, and in the case it does, give its value.
a) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+y^{2}}{y}$
b) $\lim _{(x, y) \rightarrow(1, \pi)} \frac{\cos (x y)}{1-x-\cos (y)}$
c) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{2 x^{4}+y^{4}}$

Solution.

a) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+y^{2}}{y}$ does not exist.

If $(x, y) \rightarrow(0,0)$ along $x=0$, then $\frac{x^{2}+y^{2}}{y}=y \rightarrow 0$.
If $(x, y) \rightarrow(0,0)$ along $y=x^{2}$, then $\frac{x^{2}+y^{2}}{y}=1+x^{2} \rightarrow 1$.
b) $\lim _{(x, y) \rightarrow(1, \pi)} \frac{\cos (x y)}{1-x-\cos (y)}=\frac{\cos (\pi)}{1-1-\cos (\pi)}=-1$.
c) If $x=0$ and $y \neq 0$, then $\frac{x^{2} y^{2}}{2 x^{4}+y^{4}}=0$.

If $x=y \neq 0$, then $\frac{x^{2} y^{2}}{2 x^{4}+y^{4}}=\frac{x^{4}}{2 x^{4}+x^{4}}=\frac{1}{3}$.
Therefore, $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{2 x^{4}+y^{4}}$ does not exist.

7 How can the function

$$
f(x, y)=\frac{x^{3}-y^{3}}{x-y}, \quad(x \neq y)
$$

be defined along the line $x=y$ so that the resulting function is continuous on the whole $x y$-plane?

Solution.

For $x \neq y$, we have

$$
f(x, y)=\frac{x^{3}-y^{3}}{x-y}=x^{2}+x y+y^{2}
$$

The latter expression has the value $3 x^{2}$ at points of the line $x=y$. Therefore, if we extend the definition of $f(x, y)$ so that $f(x, x)=3 x^{2}$, then the resulting function will be equal to $x^{2}+x y+y 2$ everywhere, and so continuous everywhere.

8 Find all first order partial derivatives of the given functions below.
a) $f(x, y)=\frac{1}{\sqrt{x^{2}+y^{2}}}$
b) $f(x, y, z)=x^{3} y^{4} z^{5}$
c) $f(x, y, z)=\ln \left(1+e^{x y z}\right)$

Solution.

a) $\frac{\partial f}{\partial x}=-\frac{1}{2}\left(x^{2}+y^{2}\right)^{-\frac{3}{2}}(2 x)=-\frac{x}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}}$.

By symmetry, $\frac{\partial f}{\partial y}=-\frac{y}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}}$.
b) $\frac{\partial f}{\partial x}=3 x^{2} y^{4} z^{5}$,
$\frac{\partial f}{\partial y}=4 x^{3} y^{3} z^{5}$,
$\frac{\partial f}{\partial z}=5 x^{3} y^{4} z^{4}$.
c) $\frac{\partial f}{\partial x}=\frac{y z e^{x y z}}{1+e^{x y z}}$,
$\frac{\partial f}{\partial y}=\frac{x z e^{x y z}}{1+e^{x y z}}$,
$\frac{\partial f}{\partial z}=\frac{x y e^{x y z}}{1+e^{x y z}}$.

9 Define a function

$$
f(x, y)= \begin{cases}\frac{x^{3}-y^{3}}{x^{2}+y^{2}}, & \text { if }(x, y) \neq(0,0) \\ 0, & \text { if }(x, y)=(0,0)\end{cases}
$$

(1) Calculate $f_{x}(x, y)$ and $f_{y}(x, y)$ at all points (x, y) in the plane.
(2) Is f continuous at $(0,0)$? Are f_{x} and f_{y} continuous at $(0,0)$?

Solution.

If $(x, y) \neq(0,0)$, then

$$
\begin{aligned}
f_{x}(x, y) & =\frac{\left(x^{2}+y^{2}\right) 3 x^{2}-\left(x^{3}-y^{3}\right) 2 x}{\left(x^{2}+y^{2}\right)^{2}} \\
& =\frac{x^{4}+3 x^{2} y^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
f_{y}(x, y) & =\frac{\left(x^{2}+y^{2}\right)\left(-3 y^{2}\right)-\left(x^{3}-y^{3}\right) 2 x}{2} y \\
& =-\frac{y^{4}+3 x^{2} y^{2}+2 x^{3} y}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

Also, at $(0,0)$,

$$
f_{x}(0,0)=\lim _{h \rightarrow 0} \frac{h^{3}}{h \cdot h^{2}}=1, \quad f_{y}(0,0)=\lim _{k \rightarrow 0} \frac{-k^{3}}{k \cdot k^{2}}=-1
$$

Neither f_{x} nor f_{y} has a limit at $(0,0)$ (the limits along $x=0$ and $y=0$ are different in each case), so neither function is continuous at $(0,0)$. However, f is continuous at $(0,0)$ because

$$
|f(x, y)| \leq\left|\frac{x^{3}}{x^{2}+y^{2}}\right|+\left|\frac{y^{3}}{x^{2}+y^{2}}\right| \leq|x|+|y|
$$

which $\rightarrow 0$ as $(x, y) \rightarrow(0,0)$.

