Norwegian University of Science and Technology
Department of Mathematical
Sciences

MA1103 Vector Calculus
 Spring 2022

Exercise set 11: Solutions

1 (16.1)

Calculate the divergence and curl of \mathbf{F} for the given vector fields on variables x, y and z.
a) $\mathbf{F}(x, y, z)=(y z, x z, x y)$.
b) $\mathbf{F}(r, \theta)=(r, \sin (\theta))$, where (r, θ) are polar coordinates in the plane.

Hint: Use $x=r \cos (\theta), y=r \sin (\theta)$.

Solution.

a)

By the definition of divergence and curl, we get

$$
\operatorname{div} \mathbf{F}=(y z)_{x}+(x z)_{y}+(x y)_{z}=0,
$$

and

$$
\operatorname{curl} \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
y z & x z & x y
\end{array}\right|=(x-x) \mathbf{i}+(y-y) \mathbf{j}+(z-z) \mathbf{k}=(0,0,0) .
$$

b)

Since $x=r \cos (\theta)$, and $y=r \sin (\theta)$, we have

$$
r^{2}=x^{2}+y^{2} .
$$

Taking the partial derivative on x to the left and right side of the above equation, we get

$$
\begin{equation*}
2 r \cdot r_{x}=2 x, \quad \Longrightarrow \quad r_{x}=\frac{x}{r}=\cos (\theta), \tag{1}
\end{equation*}
$$

where we have used $x=r \cos (\theta)$ in the last step. Similarly, using $y=r \sin (\theta)$, we have

$$
\begin{equation*}
2 r \cdot r_{y}=2 y, \quad \Longrightarrow \quad r_{y}=\frac{y}{r}=\sin (\theta) . \tag{2}
\end{equation*}
$$

Then by $\sin (\theta)=\frac{y}{r}$ and $r_{y}=\sin (\theta)$ in (2), we get

$$
\begin{equation*}
\frac{\partial}{\partial y} \sin (\theta)=\frac{\partial}{\partial y}\left(\frac{y}{r}\right)=\frac{r-y \cdot r_{y}}{r^{2}}=\frac{r-r \sin (\theta) \cdot \sin (\theta)}{r^{2}}=\frac{\cos ^{2}(\theta)}{r} . \tag{3}
\end{equation*}
$$

Thus, using (1) and (3), the divergence is given by

$$
\operatorname{div} \mathbf{F}=r_{x}+(\sin (\theta))_{y}=\cos (\theta)+\frac{\cos ^{2}(\theta)}{r} .
$$

Next, by the definition of curl, we have

$$
\operatorname{curl} \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \tag{4}\\
\partial_{x} & \partial_{y} & \partial_{z} \\
r & \sin (\theta) & 0
\end{array}\right|=[\sin (\theta)]_{x} \mathbf{k}-r_{y} \mathbf{k}=\left(0,0,[\sin (\theta)]_{x}-r_{y}\right) .
$$

We have computed r_{y} in (2), so let us compute $[\sin (\theta)]_{x}$ next. By $\sin (\theta)=\frac{y}{r}$ and $r_{x}=\cos (\theta)$ in (1), we get

$$
\begin{equation*}
\frac{\partial}{\partial x} \sin (\theta)=\frac{\partial}{\partial x}\left(\frac{y}{r}\right)=y \cdot(-1) r^{-2} \cdot r_{x}=-r \sin (\theta) \cdot \frac{1}{r^{2}} \cdot \cos (\theta)=-\frac{\sin (\theta) \cos (\theta)}{r} . \tag{5}
\end{equation*}
$$

Finally, substituting (5) and (2) into (4), we get

$$
\operatorname{curl} \mathbf{F}=\left(0,0,-\frac{\sin (\theta) \cos (\theta)}{r}-\sin (\theta)\right) .
$$

2 (15.5)
Find

$$
\iint_{D} y d S
$$

where D is the part of the plane $z=1+y$ that lies inside the cone $z=\sqrt{2\left(x^{2}+y^{2}\right)}$.

Solution.

The intersection of the plane $z=1+y$ and the cone $z=\sqrt{2\left(x^{2}+y^{2}\right)}$ has projection onto the $x y$-plane the elliptic disk E bounded by

$$
\begin{aligned}
(1+y)^{2} & =2\left(x^{2}+y^{2}\right), \\
1+2 y+y^{2} & =2 x^{2}+2 y^{2}, \\
2 x^{2}+y^{2}-2 y+1 & =2, \\
x^{2}+\frac{(y-1)^{2}}{2} & =1,
\end{aligned}
$$

with centroid $(0,1)$. If D is the part of the plane lying inside the cone, then the area element on D is

$$
d S=\sqrt{1+\left(\frac{\partial z}{\partial y}\right)^{2}} d x d y=\sqrt{2} d x d y
$$

Thus,

$$
\begin{equation*}
\iint_{D} y d S=\sqrt{2} \iint_{E} y d x d y:=\sqrt{2} I . \tag{6}
\end{equation*}
$$

Let us concentrate on computing I next.
Fix any $x \in[-1,1]$ in E, then we find the range of y is from $1-\sqrt{2-2 x^{2}}$ to $1+\sqrt{2-2 x^{2}}$. Thus, we have

$$
\begin{aligned}
I & =\iint_{E} y d x d y \\
& =\int_{-1}^{1}\left(\int_{1-\sqrt{2-2 x^{2}}}^{1+\sqrt{2-2 x^{2}}} y d y\right) d x \\
& =\int_{-1}^{1}\left(\left.\frac{1}{2} y^{2}\right|_{1-\sqrt{2-2 x^{2}}} ^{1+\sqrt{2-2 x^{2}}}\right) d x \\
& =\frac{1}{2} \int_{-1}^{1}\left[\left(1+\sqrt{2-2 x^{2}}\right)^{2}-\left(1-\sqrt{2-2 x^{2}}\right)^{2}\right] d x \\
& =\frac{1}{2} \int_{-1}^{1} 2 \cdot 2 \sqrt{2-2 x^{2}} d x \\
& =2 \int_{-1}^{1} \sqrt{2-2 x^{2}} d x .
\end{aligned}
$$

Let $x=\sin (t)$, then when $x=-1, t=-\frac{\pi}{2}$, when $x=1, t=\frac{\pi}{2}$, and $d x=\cos (t) d t$. Then

$$
\begin{aligned}
I & =2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{2} \cdot \cos (t) \cdot \cos (t) d t \\
& =\sqrt{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(\cos (2 t)+1) d t \\
& =\sqrt{2} \pi
\end{aligned}
$$

where the integration of $\cos (2 t)$ vanishes. Thus, substituting I into (6), we finally get

$$
\iint_{D} y d S=\sqrt{2} \cdot \sqrt{2} \pi=2 \pi .
$$

3 (15.6)
Find the flux of $\mathbf{F}=\left(y z,-x z, x^{2}+y^{2}\right)$ upward through the surface

$$
\mathbf{r}=\left(e^{u} \cos (v), e^{u} \sin (v), u\right)
$$

where $0 \leq u \leq 1$ and $0 \leq v \leq \pi$.

Solution.

The aimed area $D: \mathbf{r}=\left(e^{u} \cos (v), e^{u} \sin (v), u\right),(0 \leq u \leq 1,0 \leq v \leq \pi)$, has upward surface element

$$
\begin{aligned}
\mathbf{N} d S & =\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} d u d v \\
& =\left(-e^{u} \cos (v),-e^{u} \sin (v), e^{2 u}\right) d u d v .
\end{aligned}
$$

The flux of $\mathbf{F}=\left(y z,-x z, x^{2}+y^{2}\right)$ upward through D is

$$
\begin{align*}
& \iint_{D} \mathbf{F} \cdot \mathbf{N} d S \\
= & \int_{0}^{1}\left[\int_{0}^{\pi}\left(u e^{u} \sin (v),-u e^{u} \cos (v), e^{2 u}\right) \cdot\left(-e^{u} \cos (v),-e^{u} \sin (v), e^{2 u}\right) d v\right] d u \\
= & \int_{0}^{1}\left[\int_{0}^{\pi}\left(-u e^{2 u} \sin (v) \cos (v)+u e^{2 u} \sin (v) \cos (v)+e^{4 u}\right) d v\right] d u \tag{7}
\end{align*}
$$

Let us compute the inner integration one by one. Firstly,

$$
\begin{aligned}
& \int_{0}^{\pi}-u e^{2 u} \sin (v) \cos (v) d v \\
= & -u e^{2 u} \int_{0}^{\pi} \sin (v) d(\sin (v)) \\
= & -\left.u e^{2 u} \cdot \frac{1}{2} \sin ^{2}(v)\right|_{0} ^{\pi} \\
= & 0 .
\end{aligned}
$$

Using the above computational result, the second integration is also given by

$$
\int_{0}^{\pi} u e^{2 u} \sin (v) \cos (v) d v=0
$$

Thirdly,

$$
\int_{0}^{\pi} e^{4 u} d v=e^{4 u} \pi
$$

Thus, substituting the above three results into (7), we get

$$
\iint_{D} \mathbf{F} \cdot \mathbf{N} d S=\int_{0}^{1} e^{4 u} \pi d u=\left.\frac{\pi}{4} e^{4 u}\right|_{0} ^{1}=\frac{\pi}{4}\left(e^{4}-1\right)
$$

4 (15.6)
Let S be the part of the surface of the cylinder $y^{2}+z^{2}=16$ that lies in the first octant and between the planes $x=0$ and $x=5$. Find the flux of $\left(3 z^{2} x,-x,-y\right)$ away from the x-axis through S.

Solution.

Rewrite $y^{2}+z^{2}=16$ as $z=\sqrt{16-y^{2}}:=f(x, y)$. The first octant part of the cylinder $y^{2}+z^{2}=16$ has outward vector surface element

$$
\begin{aligned}
\mathbf{N} d A=\left(-f_{x} \cdot-f_{y}, 1\right) d x d y & =\left(0,-\frac{1}{2}\left(16-y^{2}\right)^{-\frac{1}{2}} \cdot(-2 y), 1\right) d x d y \\
& =\left(0, \frac{y}{\sqrt{16-y^{2}}}, 1\right) d x d y
\end{aligned}
$$

The flux of $\left(3 z^{2} x,-x,-y\right)$ outward through the specified surface S is

$$
\begin{align*}
& \iint_{S} \mathbf{F} \cdot \mathbf{N} d A \\
= & \int_{0}^{5}\left[\int_{0}^{4}\left(3 z^{2} x,-x,-y\right) \cdot\left(0, \frac{y}{\sqrt{16-y^{2}}}, 1\right) d y\right] d x \\
= & \int_{0}^{5}\left[\int_{0}^{4}\left(0-\frac{x y}{\sqrt{16-y^{2}}}-y\right) d y\right] d x . \tag{8}
\end{align*}
$$

Note that

$$
\begin{aligned}
& \int_{0}^{4}-\frac{x y}{\sqrt{16-y^{2}}} d y \\
= & \frac{x}{2} \int_{0}^{4}\left(16-y^{2}\right)^{-\frac{1}{2}} d\left(16-y^{2}\right) \\
= & \left.\frac{x}{2} \cdot \frac{\left(16-y^{2}\right)^{\frac{1}{2}}}{\frac{1}{2}}\right|_{0} ^{4} \\
= & -4 x
\end{aligned}
$$

taking this result into (8), we have

$$
\begin{aligned}
& \iint_{S} \mathbf{F} \cdot \mathbf{N} d A \\
= & \int_{0}^{5}\left(-4 x-\left.\frac{y^{2}}{2}\right|_{0} ^{4}\right) d x \\
= & \int_{0}^{5}(-4 x-8) d x \\
= & \left.\left(-2 x^{2}-8 x\right)\right|_{0} ^{5} \\
= & -90
\end{aligned}
$$

5 (15.4)
For what values of the constants a, b, and c can you determine the value of the integral I of the tangential component of

$$
\mathbf{F}=\left(a x y+3 y z, x^{2}+3 x z+b y^{2} z, b x y+c y^{3}\right)
$$

along a curve from $(0,1,-1)$ to $(2,1,1)$ without knowing the curve? What is the value of the integral?

Solution.

$\int_{C} \mathbf{F} \cdot d \mathbf{r}$ can be determined using only the endpoints of C, provided

$$
\mathbf{F}=\left(a x y+3 y z, x^{2}+3 x z+b y^{2} z, b x y+c y^{3}\right)
$$

is conservative, that is, if

$$
\begin{aligned}
a x+3 z=\frac{\partial F_{1}}{\partial y} & =\frac{\partial F_{2}}{\partial x}=2 x+3 z \\
3 y & =\frac{\partial F_{1}}{\partial z}=\frac{\partial F_{3}}{\partial x}=b y \\
3 x+b y^{2} & =\frac{\partial F_{2}}{\partial z}=\frac{\partial F_{3}}{\partial y}=b x+3 c y^{2}
\end{aligned}
$$

Thus we need $a=2, b=3$, and $c=1$. With these values, let us find a potential of \mathbf{F}, where

$$
\mathbf{F}=\left(2 x y+3 y z, x^{2}+3 x z+3 y^{2} z, 3 x y+y^{3}\right)
$$

Observing the first position of \mathbf{F}, we have

$$
\int(2 x y+3 y z) d x=x^{2} y+3 x y z
$$

We can suppose the potential function as

$$
\begin{equation*}
f(x, y, z)=x^{2} y+3 x y z+C_{1} \tag{9}
\end{equation*}
$$

where C_{1} is a function that depends on the variables y and z. So we now know that

$$
f_{x}=2 x y+3 y z
$$

Let us continue to consider the second position of \mathbf{F}. From our result of f in (9), we have

$$
f_{y}=x^{2}+3 x z+\left(C_{1}\right)_{y}
$$

Comparing this result with the second position of \mathbf{F}, we get

$$
\left(C_{1}\right)_{y}=3 y^{2} z, \quad \Longrightarrow \quad C_{1}=y^{3} z+C_{2}
$$

where C_{2} is a function that depends on the variable z. So by now we have

$$
\begin{equation*}
f(x, y, z)=x^{2} y+3 x y z+y^{3} z+C_{2} \tag{10}
\end{equation*}
$$

Finally, consider the third position of \mathbf{F}, using (10), we get

$$
f_{z}=3 x y+y^{3}+\left(C_{2}\right)_{z}, \quad \Longrightarrow \quad C_{2}=0, \quad \text { (you can obtain any constant here) }
$$

by comparing with the third position of \mathbf{F}. Thus, we have found a potential for \mathbf{F} as

$$
f(x, y, z)=x^{2} y+3 x y z+y^{3} z=\nabla \mathbf{F}
$$

Then

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\left.\left(x^{2} y+3 x y z+y^{3} z\right)\right|_{(0,1,-1)} ^{(2,1,1)}=11-(-1)=12
$$

6 (15.2), (15.4)
Consider the vector fields

$$
\begin{aligned}
\mathbf{F} & =\left((1+x) e^{x+y}, x e^{x+y}+2 y,-2 z\right) \\
\mathbf{G} & =\left((1+x) e^{x+y}, x e^{x+y}+2 z,-2 y\right)
\end{aligned}
$$

a) Show that \mathbf{F} is conservative by finding a potential for it.
b) Evaluate

$$
\int_{C} \mathbf{G} \cdot d \mathbf{r}
$$

where C is given by

$$
\mathbf{r}=\left((1-t) e^{t}, t, 2 t\right), \quad(0 \leq t \leq 1)
$$

by taking advantage of the similarity between \mathbf{F} and \mathbf{G}.

Solution.

a)

Observing the first position of \mathbf{F}, we have

$$
\begin{aligned}
\int(1+x) e^{x+y} d x=\int(1+x) d\left(e^{x+y}\right) & =(1+x) e^{x+y}-\int e^{x+y} d x \\
& =(1+x) e^{x+y}-e^{x+y} \\
& =x e^{x+y}
\end{aligned}
$$

We can suppose the potential function as

$$
\begin{equation*}
f(x, y, z)=x e^{x+y}+C_{1} \tag{11}
\end{equation*}
$$

where C_{1} is a function that depends on the variables y and z. So we now know that

$$
f_{x}=(1+x) e^{x+y}
$$

Let us continue to consider the second position of \mathbf{F}. From our result of f in (11), we have

$$
f_{y}=x e^{x+y}+\left(C_{1}\right)_{y}
$$

Comparing this result with the second position of \mathbf{F}, we get

$$
\left(C_{1}\right)_{y}=2 y, \quad \Longrightarrow \quad C_{1}=y^{2}+C_{2}
$$

where C_{2} is a function that depends on the variable z. So by now we have

$$
\begin{equation*}
f(x, y, z)=x e^{x+y}+y^{2}+C_{2} \tag{12}
\end{equation*}
$$

Finally, consider the third position of \mathbf{F}, using (12), we get

$$
f_{z}=\left(C_{2}\right)_{z}=-2 z, \quad \Longrightarrow \quad C_{2}=-z^{2} . \quad(\text { you can add any constant here) }
$$

Thus, we have found a potential for \mathbf{F} as

$$
f(x, y, z)=x e^{x+y}+y^{2}-z^{2}=\nabla \mathbf{F}
$$

which means \mathbf{F} is conservative.
b)

From the expression of G, we

$$
\begin{aligned}
\mathbf{G} & =\left((1+x) e^{x+y}, x e^{x+y}+2 z,-2 y\right) \\
& =\left((1+x) e^{x+y}, x e^{x+y}+2 y,-2 z\right)+(0,2(z-y), 2(z-y)) \\
& =\mathbf{F}+(0,2(z-y), 2(z-y)) .
\end{aligned}
$$

From the expression of C, we have

$$
\mathbf{r}(0)=(1,0,0), \quad \mathbf{r}(1)=(0,1,2) .
$$

Thus,

$$
\begin{aligned}
\int_{C} \mathbf{G} \cdot d \mathbf{r} & =\int_{C} \mathbf{F} \cdot d \mathbf{r}+\int_{C}(0,2(z-y), 2(z-y)) \cdot d \mathbf{r} \\
& =\left.\left(x e^{x+y}+y^{2}-z^{2}\right)\right|_{(1,0,0)} ^{(0,1,2)}+\int_{0}^{1}(0,2(2 t-t), 2(2 t-t)) \cdot \frac{d \mathbf{r}}{d t} d t \\
& =-3-e+\int_{0}^{1}(0,2(2 t-t), 2(2 t-t)) \cdot\left(-t e^{t}, 1,2\right) d t \\
& =-3-e+\int_{0}^{1} 6 t d t \\
& =-3-e+\left.3 t^{2}\right|_{0} ^{1} \\
& =-e
\end{aligned}
$$

