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Problem

First, by the extreme-value theorem, we know that f assumes extreme values on D. Critical points:

) Y
'j_ —
— = =0.

That is, the origin (0,0). This is an interior point of D. Next, we need to consider f|gp (the restriction of

f to OD) and look for extreme values here. Consider
g(x,y) = ® +ay +y° = 3.

Then dD = {(x,y) € R? : g(x,y) = 0}. Lagrange’s method therefore gives multiplier A such that

Vf=AVg.
That is,
(y,2) = A2z +y,x+2y).

That is,

y= A2z +y)

x = A2y + x).
That is,

y(I=X) = A2z

z(1—X) = A2y.



Note first that we may assume A # 0. Else we end up with with the critical point (0,0) which does not
belong to 0D. Similarly we may assume A # 1. Thus, we find

11—\

y— - =2

11—\
=2y

If x = 0, we see that y = 0 and vice versa. Hence, we may assume x # 0,y # 0. Then dividing we find

2 2y
y
or
222 = 22,

That is, 22 = y2. That is, x = £y. Substituted into g(x,y) = 0 we find 222 + 22 = 3. If we choose + we get
322 =3 or 22> = 1. That is, z = +1 = y. If we choose —, we get 2> = 3 or = +v/3 = —y. This gives the
points #(1,1) and v/3(£1, F1). That is, four points:

P = (13 1)7 p2 = (_1’ —1), b3 = \/3(1, _1)7 by = \/g(_la 1)~
Substituted into f(x,y) gives

f(0,0)=0, f(pr) =1=f(p2), f(ps)=—-3=f(pa)

Thus the maximum value of f on D is 1 and the minimum value is —3.

Problem

_ 2
Yy =uv — v,

x:us—l—vs, u:u(x,y),
=

Differentiating the given equations with respect to x, we get

., 20u 50V
1=3 3 + 3v 2z
ou ov



At u =v =1, we have

ou ov
1 =37+ +3
36':E +36x’

0 _Ou  Ov

T 9r Oz’
Thus
ou oOv 1

dr  Or 6

Similarly, differentiating the given equations with respect to y and putting u = v = 1, we get

ou ov

0=3% +35
T
Cdy Oy

Thus

Finally, at w = v = 1, we have

9 1o} 1 1
deta(u’v): ﬁ 87; — 6 g :_1.
CEiE IS i F RS

Problem

a) Note that f(z,y) = e9®¥) where g(z,y) = —22% — 4zy — y*. Thus, the critical points of f are those of
g. Computing we find

Vy(z,y) = (—4z — 4y, —da — 4y°) = —4(z + y, = + °).

Solving Vg(z,y) = 0 gives = —y and z — 23 = x(1 — 2%) = 0. This latter one gives 22> = 1 or x = 0.
From 22 = 1 we find £ = &1 = —y. This gives the critical points

b1 = (050)7 b2 = (15 _1)a b3 = (_1’ 1)



of  ,9g f  (09\ . ,9%  ,((09\* K &9
oz Cor o “\ar) a2 \\az) Ta2)

By symmetry we also find

and since f and g are smooth,

0% f 0% f o of dg dg 0%g dg dg 0%g
= :7726977+€g =€ 77""‘ .
dxdy  Oydxr Oy oz Oy Ox Oyox Jy dx  Oyox

Put fro := A, foy == B, fzy := C. Then the Hessian of f is given by

1) = (g g)

with determinant det(H(f)) = AC — B?. Computing we find

9(z,y) = —(22% + dzy + y*)

15)
2 (x,y) = —4la +y)
15)
8—5@,@/) = —4(z +y°)
0%g
@(x,y) =—4
82
afyg(x,y) =—12y°
0%g
m(%y) =—4

Now consider each of the points py, p2, p3 above. We find
e For p; = (0,0):
A(pr) = ¢"99((92(0,0))* + g22(0,0)) = €°(0* + (—4)) = —4

Clpr) = "V ((95(0,0)% + g4 (0,0)) = €°(0* +0) = 0
B(p1) = —4.



Thus det(H(f))(p1) = —16 < 0. So p1 = (0,0) is a saddle point.
e For po =(1,-1):

A(p2) = e ((g2(1, =1)? + gaa(1, —1)) = e ED(0 — 4) = —de
Clp2) = 6(1’71)((911(1’ _1))2 +gyy(1,-1)) = 37(374)(0 —12) = —12e
B(ps) = —4.

Thus det(H(f))(p2) = 48¢2 — 16 > 0, and A(p2) < 0. So p2 = (1, —1) is a local maximum.
1

e For p3 = (—1,1): by symmetry, p3 is also a local maximum.

c) Let h(z,y) = 22 + y?> — 1. Then we are looking for the maximum and minimum values of g along

{(z,y) € R? : h(x,y) = 0}. Lagrange’s method gives multiplier A such that

Vg = AVh.
That is,
5((z =yt —(@—9)*) = 2X(z,y).
That is,
(z—y)'= %x\x
-y =2y
Suppose that A # 0. Then, z = —y. Substituted into h(x,y) = 0 gives 222> =1 or x = i% = —y. This

gives the two points ¢; = %(1, —1) and ¢ = %(—1, 1). Substituted into the expression for g(x,y) gives

9(q) = (%) (1—(—1))° = (vV2)° =412

9(q2) = —4V2.

Now consider A = 0. We get Vg(z,y) = 0 which gives x = y. Note that g|,—,; = 0. Thus g(q1) and

g(g2) above are the maximum and minimum values of g along the given curve respectively.



Problem
Let L =a+ \Na +y — 2) + u(2? + 2y + 222 — 8). For critical points of L:

0:g§:1+)\+2ufn (1)
02252)&-4/1@/ (2)
0= gﬁ =—-A+4pz (3)
Oza—i:ery—z (4)
oz%zxuzyuhts. (5)

From (2) and (3), we have u(y+2) =0. Thus p=0or y+ 2z =0.
CASE L p=0. Then A =0 by (2), and 1 =0 by (1), so this case is not possible.

CASEII. y + 2z = 0. Then z = —y and, by (4), z = —2y. Therefore, by (5), 4y* + 23> + 2y?> = 8, and so
y = £1. From this case we obtain two points: (2,—1,1) and (-2,1,—1).

The function f(z,y,z) = x has maximum value 2 and minimum value —2 when restricted to the curve
x4y =2z 22+ 2%+ 222 =8.

Problem

oo 2 o 2 o 1 2 1
/ / e *ye Y dxrdy = (/ ye Y dy) (/ e ” dm) =——e ¥V | =c
o Jo 0 0 2 2

Problem [6]
a) Using polar coordinates:
) ot oyt +23yP o rtcost 0 + risin® 0 + r8 cosd Osin® 0
hm a4 = 1m T =1
(z,y)—(0,0) rt+y r—0 rtcostf + rtsin® 0

b) Let f(x,y) = sin (%) Then f(z,z) = sin (%), while f(0,1) = 0. Thus the limit lim, ) 0,0y f (%, )
does not exist.



Problem

The chain rule gives

fa: = f'rrz +f«90x
fy = frry + f99y~

We have 22 + y? = r2. Let z € {z,y}. Partial differentiating with respect to z gives 2rr, = 2z. That is,
r, = 2. That is, r, = cosf,r, = sinf. Let t,(6) = cos(f),t, = sin(#) (the ¢ here stands for trigonometric
and the subscript z is simply an index and not a partial differentiation). Then from z = rt,(0), differentiating
with respect to z we find 1 = r,t, +r(t,)'0.. That is, 0, = L-"2L= That is,

T(TZ),

0 — 1 —7rycos6 1 —cos?6 __ sin@

—rsiné —rsind r

1—sin?0  cosf
9y = =

rcosf T

Note that u = (cos6,sin6),ut = (—sin, cos ) (recall ut is u rotated by 5 counter-clockwise). Thus,

v(xvy)f = (frrz + f@ezv fr"’y + f&ey)

- (frcose - few7frsin9+fecosa)
T

r

1
= fr(cosf,sinf) + ;f@(— sin 6, cos )
1
= fru+ ;f@ul-

Hence we get that a = f,.,b = %fg‘

Problem

a) Rewrite the equations into f; = 2% +2y? + u? + v —6 = 0 and fo = 22° + 4y + u + v? — 9 = 0. Define
F: R* - R? to be

F(z,y,u,v) = (2* + 2y* +u® + v — 6,22% + 49° + u +v* - 9).

Step 1: Check F is C! near (1,-1,-1,2).
A quick differentiation yields
of1 ofr of1 of1 Of2 fa Of Of2

L —9p, =4y, —L=2u, =1, -2 =62 =8y, = =1, ——=2.
oz “ oy Y ou Y By " Oz o Ay Y ou T Ov v



Since all partial derivatives exist and continuous everywhere, F' is C'! everywhere (in particular near (1, —1, —1,2)).

Step 2: Check F(p) =0.
Clearly F(1,—1,-1,2) = (0,0).

Step 3: Check det 88(

(e (p) # 0.

ofi  ofr
det a(fl’fz)(p):det<8“ 6v> :—9#0

d(u,v) el o (1,-1,-1,2)

ou ov

2 1
= det v
1 2v
(1,-1,—1,2)

Hence, by Implicit Function Theorem, (u,v) can be expressed as a differentiable function of (x,y) near
(1,-1,-1,2).

b) To find g—; (denote by u,) and g—; (denote by u,), we differentiate both sides of each equation with respect
to = (i.e. implicit differentiation), it gives

2x 4+ 2uu, + vy = 0, 2uu, + v, = —2, 2u 1 Uy, —2x
— — = 9 .
622 + uy + 2vv, =0, Up + 200, = —622, 1 2v) \vu —6z

Solving the above system, near (1, —1,—1,2), we have

622 — dav d 2z — 12220
Uy = 11 V, =
v 4uv — 1 v quv — 1
Hence,
14
ur(1,—1,-1,2) = =, w,(1,-1,-1,2) = -5



