MA1103 Solutions for Exercise Set 8

Norwegian University of Science and Technology

Problem 1

First, by the extreme-value theorem, we know that f assumes extreme values on D. Critical points:

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=y=0 \\
& \frac{\partial f}{\partial y}=x=0 .
\end{aligned}
$$

That is, the origin $(0,0)$. This is an interior point of D. Next, we need to consider $\left.f\right|_{\partial D}$ (the restriction of f to $\partial D)$ and look for extreme values here. Consider

$$
g(x, y)=x^{2}+x y+y^{2}-3
$$

Then $\partial D=\left\{(x, y) \in \mathbb{R}^{2}: g(x, y)=0\right\}$. Lagrange's method therefore gives multiplier λ such that

$$
\nabla f=\lambda \nabla g
$$

That is,

$$
(y, x)=\lambda(2 x+y, x+2 y)
$$

That is,

$$
\begin{aligned}
& y=\lambda(2 x+y) \\
& x=\lambda(2 y+x) .
\end{aligned}
$$

That is,

$$
\begin{aligned}
& y(1-\lambda)=\lambda 2 x \\
& x(1-\lambda)=\lambda 2 y .
\end{aligned}
$$

Note first that we may assume $\lambda \neq 0$. Else we end up with with the critical point $(0,0)$ which does not belong to ∂D. Similarly we may assume $\lambda \neq 1$. Thus, we find

$$
\begin{aligned}
& y \frac{1-\lambda}{\lambda}=2 x \\
& x \frac{1-\lambda}{\lambda}=2 y
\end{aligned}
$$

If $x=0$, we see that $y=0$ and vice versa. Hence, we may assume $x \neq 0, y \neq 0$. Then dividing we find

$$
\frac{2 x}{y}=\frac{2 y}{x}
$$

or

$$
2 x^{2}=2 y^{2}
$$

That is, $x^{2}=y^{2}$. That is, $x= \pm y$. Substituted into $g(x, y)=0$ we find $2 x^{2} \pm x^{2}=3$. If we choose + we get $3 x^{2}=3$ or $x^{2}=1$. That is, $x= \pm 1=y$. If we choose - , we get $x^{2}=3$ or $x= \pm \sqrt{3}=-y$. This gives the points $\pm(1,1)$ and $\sqrt{3}(\pm 1, \mp 1)$. That is, four points:

$$
p_{1}=(1,1), \quad p_{2}=(-1,-1), \quad p_{3}=\sqrt{3}(1,-1), \quad p_{4}=\sqrt{3}(-1,1)
$$

Substituted into $f(x, y)$ gives

$$
f(0,0)=0, \quad f\left(p_{1}\right)=1=f\left(p_{2}\right), \quad f\left(p_{3}\right)=-3=f\left(p_{4}\right)
$$

Thus the maximum value of f on D is 1 and the minimum value is -3 .

Problem 2

$$
\left\{\begin{array} { l }
{ x = u ^ { 3 } + v ^ { 3 } } \\
{ y = u v - v ^ { 2 } }
\end{array} \quad \Longrightarrow \quad \left\{\begin{array}{l}
u=u(x, y) \\
v=v(x, y)
\end{array}\right.\right.
$$

Differentiating the given equations with respect to x, we get

$$
\begin{aligned}
& 1=3 u^{2} \frac{\partial u}{\partial x}+3 v^{2} \frac{\partial v}{\partial x} \\
& 0=v \frac{\partial u}{\partial x}+(u-2 v) \frac{\partial v}{\partial x}
\end{aligned}
$$

At $u=v=1$, we have

$$
\begin{aligned}
& 1=3 \frac{\partial u}{\partial x}+3 \frac{\partial v}{\partial x} \\
& 0=\frac{\partial u}{\partial x}-\frac{\partial v}{\partial x}
\end{aligned}
$$

Thus

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial x}=\frac{1}{6} .
$$

Similarly, differentiating the given equations with respect to y and putting $u=v=1$, we get

$$
\begin{aligned}
& 0=3 \frac{\partial u}{\partial y}+3 \frac{\partial v}{\partial y} \\
& 1=\frac{\partial u}{\partial y}-\frac{\partial v}{\partial y}
\end{aligned}
$$

Thus

$$
\frac{\partial u}{\partial y}=\frac{1}{2}, \quad \frac{\partial v}{\partial y}=-\frac{1}{2}
$$

Finally, at $u=v=1$, we have

$$
\operatorname{det} \frac{\partial(u, v)}{\partial(x, y)}=\left|\begin{array}{ll}
\frac{\partial u}{\partial x} & \frac{\partial v}{\partial x} \\
\frac{\partial u}{\partial y} & \frac{\partial v}{\partial y}
\end{array}\right|=\left|\begin{array}{cc}
\frac{1}{6} & \frac{1}{6} \\
\frac{1}{2} & -\frac{1}{2}
\end{array}\right|=-\frac{1}{6}
$$

Problem 3

a) Note that $f(x, y)=e^{g(x, y)}$ where $g(x, y)=-2 x^{2}-4 x y-y^{4}$. Thus, the critical points of f are those of g. Computing we find

$$
\nabla g(x, y)=\left(-4 x-4 y,-4 x-4 y^{3}\right)=-4\left(x+y, x+y^{3}\right)
$$

Solving $\nabla g(x, y)=0$ gives $x=-y$ and $x-x^{3}=x\left(1-x^{2}\right)=0$. This latter one gives $x^{2}=1$ or $x=0$. From $x^{2}=1$ we find $x= \pm 1=-y$. This gives the critical points

$$
p_{1}=(0,0), \quad p_{2}=(1,-1), \quad p_{3}=(-1,1)
$$

b)

$$
\frac{\partial f}{\partial x}=e^{g} \frac{\partial g}{\partial x} \Longrightarrow \frac{\partial^{2} f}{\partial x^{2}}=e^{g}\left(\frac{\partial g}{\partial x}\right)^{2}+e^{g} \frac{\partial^{2} g}{\partial x^{2}}=e^{g}\left(\left(\frac{\partial g}{\partial x}\right)^{2}+\frac{\partial^{2} g}{\partial x^{2}}\right) .
$$

By symmetry we also find

$$
\frac{\partial^{2} f}{\partial y^{2}}=e^{g}\left(\left(\frac{\partial g}{\partial y}\right)^{2}+\frac{\partial^{2} g}{\partial y^{2}}\right)
$$

and since f and g are smooth,

$$
\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial}{\partial y} \frac{\partial f}{\partial x}=e^{g} \frac{\partial g}{\partial y} \frac{\partial g}{\partial x}+e^{g} \frac{\partial^{2} g}{\partial y \partial x}=e\left(\frac{\partial g}{\partial y} \frac{\partial g}{\partial x}+\frac{\partial^{2} g}{\partial y \partial x}\right) .
$$

Put $f_{x x}:=A, f_{x y}:=B, f_{x y}:=C$. Then the Hessian of f is given by

$$
H(f)=\left(\begin{array}{ll}
A & B \\
B & C
\end{array}\right)
$$

with determinant $\operatorname{det}(H(f))=A C-B^{2}$. Computing we find

$$
\begin{aligned}
g(x, y) & =-\left(2 x^{2}+4 x y+y^{4}\right) \\
\frac{\partial g}{\partial x}(x, y) & =-4(x+y) \\
\frac{\partial g}{\partial y}(x, y) & =-4\left(x+y^{3}\right) \\
\frac{\partial^{2} g}{\partial x^{2}}(x, y) & =-4 \\
\frac{\partial^{2} g}{\partial y^{2}}(x, y) & =-12 y^{2} \\
\frac{\partial^{2} g}{\partial y \partial x}(x, y) & =-4
\end{aligned}
$$

Now consider each of the points p_{1}, p_{2}, p_{3} above. We find

- For $p_{1}=(0,0)$:

$$
\begin{aligned}
& A\left(p_{1}\right)=e^{g(0,0)}\left(\left(g_{x}(0,0)\right)^{2}+g_{x x}(0,0)\right)=e^{0}\left(0^{2}+(-4)\right)=-4 \\
& C\left(p_{1}\right)=e^{g(0,0)}\left(\left(g_{y}(0,0)^{2}+g_{y y}(0,0)\right)=e^{0}\left(0^{2}+0\right)=0\right. \\
& B\left(p_{1}\right)=-4 .
\end{aligned}
$$

Thus $\operatorname{det}(H(f))\left(p_{1}\right)=-16<0$. So $p_{1}=(0,0)$ is a saddle point.

- For $p_{2}=(1,-1)$:

$$
\begin{aligned}
& A\left(p_{2}\right)=e^{(1,-1)}\left(\left(g_{x}(1,-1)\right)^{2}+g_{x x}(1,-1)\right)=e^{-(3-4)}(0-4)=-4 e \\
& C\left(p_{2}\right)=e^{(1,-1)}\left(\left(g_{y}(1,-1)\right)^{2}+g_{y y}(1,-1)\right)=e^{-(3-4)}(0-12)=-12 e \\
& B\left(p_{2}\right)=-4
\end{aligned}
$$

Thus $\operatorname{det}(H(f))\left(p_{2}\right)=48 e^{2}-16>0$, and $A\left(p_{2}\right)<0$. So $p_{2}=(1,-1)$ is a local maximum.

- For $p_{3}=(-1,1)$: by symmetry, p_{3} is also a local maximum.
c) Let $h(x, y)=x^{2}+y^{2}-1$. Then we are looking for the maximum and minimum values of g along $\left\{(x, y) \in \mathbb{R}^{2}: h(x, y)=0\right\}$. Lagrange's method gives multiplier λ such that

$$
\nabla g=\lambda \nabla h
$$

That is,

$$
5\left((x-y)^{4},-(x-y)^{4}\right)=2 \lambda(x, y)
$$

That is,

$$
\begin{aligned}
(x-y)^{4} & =\frac{2}{5} \lambda x \\
-(x-y)^{4} & =\frac{2}{5} \lambda y
\end{aligned}
$$

Suppose that $\lambda \neq 0$. Then, $x=-y$. Substituted into $h(x, y)=0$ gives $2 x^{2}=1$ or $x= \pm \frac{1}{\sqrt{2}}=-y$. This gives the two points $q_{1}=\frac{1}{\sqrt{2}}(1,-1)$ and $q_{2}=\frac{1}{\sqrt{2}}(-1,1)$. Substituted into the expression for $g(x, y)$ gives

$$
\begin{aligned}
& g\left(q_{1}\right)=\left(\frac{1}{\sqrt{2}}\right)^{5}(1-(-1))^{5}=(\sqrt{2})^{5}=4 \sqrt{2} \\
& g\left(q_{2}\right)=-4 \sqrt{2}
\end{aligned}
$$

Now consider $\lambda=0$. We get $\nabla g(x, y)=0$ which gives $x=y$. Note that $\left.g\right|_{\{x=y\}}=0$. Thus $g\left(q_{1}\right)$ and $g\left(q_{2}\right)$ above are the maximum and minimum values of g along the given curve respectively.

Problem 4

Let $L=x+\lambda(x+y-z)+\mu\left(x^{2}+2 y^{2}+2 z^{2}-8\right)$. For critical points of L :

$$
\begin{align*}
& 0=\frac{\partial L}{\partial x}=1+\lambda+2 \mu x \tag{1}\\
& 0=\frac{\partial L}{\partial y}=\lambda+4 \mu y \tag{2}\\
& 0=\frac{\partial L}{\partial z}=-\lambda+4 \mu z \tag{3}\\
& 0=\frac{\partial L}{\partial \lambda}=x+y-z \tag{4}\\
& 0=\frac{\partial L}{\partial \mu}=x^{2}+2 y^{2}+2 z^{2}-8 \tag{5}
\end{align*}
$$

From (2) and (3), we have $\mu(y+z)=0$. Thus $\mu=0$ or $y+z=0$.

CASE I. $\mu=0$. Then $\lambda=0$ by (2), and $1=0$ by (1), so this case is not possible.

CASE II. $y+z=0$. Then $z=-y$ and, by (4), $x=-2 y$. Therefore, by (5), $4 y^{2}+2 y^{2}+2 y^{2}=8$, and so $y= \pm 1$. From this case we obtain two points: $(2,-1,1)$ and $(-2,1,-1)$.

The function $f(x, y, z)=x$ has maximum value 2 and minimum value -2 when restricted to the curve $x+y=z, x^{2}+2 y^{2}+2 z^{2}=8$.

Problem 5

$$
\int_{0}^{\infty} \int_{0}^{\infty} e^{-x} y e^{-y^{2}} d x d y=\left(\int_{0}^{\infty} y e^{-y^{2}} d y\right)\left(\int_{0}^{\infty} e^{-x} d x\right)=-\left.\frac{1}{2} e^{-y^{2}}\right|_{0} ^{\infty}=\frac{1}{2}
$$

Problem 6

a) Using polar coordinates:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4}+y^{4}+x^{3} y^{3}}{x^{4}+y^{4}}=\lim _{r \rightarrow 0} \frac{r^{4} \cos ^{4} \theta+r^{4} \sin ^{4} \theta+r^{6} \cos ^{3} \theta \sin ^{3} \theta}{r^{4} \cos ^{4} \theta+r^{4} \sin ^{4} \theta}=1
$$

b) Let $f(x, y)=\sin \left(\frac{x^{3} y}{x^{4}+y^{4}}\right)$. Then $f(x, x)=\sin \left(\frac{1}{2}\right)$, while $f(0,1)=0$. Thus the $\operatorname{limit} \lim _{(x, y) \rightarrow(0,0)} f(x, y)$ does not exist.

Problem 7

The chain rule gives

$$
\begin{aligned}
& f_{x}=f_{r} r_{x}+f_{\theta} \theta_{x} \\
& f_{y}=f_{r} r_{y}+f_{\theta} \theta_{y} .
\end{aligned}
$$

We have $x^{2}+y^{2}=r^{2}$. Let $z \in\{x, y\}$. Partial differentiating with respect to z gives $2 r r_{z}=2 z$. That is, $r_{z}=\frac{z}{r}$. That is, $r_{x}=\cos \theta, r_{y}=\sin \theta$. Let $t_{x}(\theta)=\cos (\theta), t_{y}=\sin (\theta)$ (the t here stands for trigonometric and the subscript z is simply an index and not a partial differentiation). Then from $z=r t_{z}(\theta)$, differentiating with respect to z we find $1=r_{z} t_{z}+r\left(t_{z}\right)^{\prime} \theta_{z}$. That is, $\theta_{z}=\frac{1-r_{z} t_{z}}{r\left(r_{z}\right)^{\prime}}$. That is,

$$
\begin{aligned}
& \theta_{x}=\frac{1-r_{x} \cos \theta}{-r \sin \theta}=\frac{1-\cos ^{2} \theta}{-r \sin \theta}=\frac{\sin \theta}{r} \\
& \theta_{y}=\frac{1-\sin ^{2} \theta}{r \cos \theta}=\frac{\cos \theta}{r} .
\end{aligned}
$$

Note that $\mathbf{u}=(\cos \theta, \sin \theta), \mathbf{u}^{\perp}=(-\sin \theta, \cos \theta)$ (recall \mathbf{u}^{\perp} is \mathbf{u} rotated by $\frac{\pi}{2}$ counter-clockwise). Thus,

$$
\begin{aligned}
\nabla_{(x, y)} f & =\left(f_{r} r_{x}+f_{\theta} \theta_{x}, f_{r} r_{y}+f_{\theta} \theta_{y}\right) \\
& =\left(f_{r} \cos \theta-f_{\theta} \frac{\sin \theta}{r}, f_{r} \sin \theta+f_{\theta} \frac{\cos \theta}{r}\right) \\
& =f_{r}(\cos \theta, \sin \theta)+\frac{1}{r} f_{\theta}(-\sin \theta, \cos \theta) \\
& =f_{r} \mathbf{u}+\frac{1}{r} f_{\theta} \mathbf{u}^{\perp} .
\end{aligned}
$$

Hence we get that $a=f_{r}, b=\frac{1}{r} f_{\theta}$.

Problem 8

a) Rewrite the equations into $f_{1}=x^{2}+2 y^{2}+u^{2}+v-6=0$ and $f_{2}=2 x^{3}+4 y^{2}+u+v^{2}-9=0$. Define $\mathbf{F}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ to be

$$
\mathbf{F}(x, y, u, v)=\left(x^{2}+2 y^{2}+u^{2}+v-6,2 x^{3}+4 y^{2}+u+v^{2}-9\right) .
$$

Step 1: Check F is \mathbf{C}^{1} near ($\mathbf{1},-\mathbf{1},-\mathbf{1}, \mathbf{2}$).
A quick differentiation yields

$$
\frac{\partial f_{1}}{\partial x}=2 x, \quad \frac{\partial f_{1}}{\partial y}=4 y, \quad \frac{\partial f_{1}}{\partial u}=2 u, \quad \frac{\partial f_{1}}{\partial v}=1, \quad \frac{\partial f_{2}}{\partial x}=6 x^{2}, \quad \frac{\partial f_{2}}{\partial y}=8 y, \quad \frac{\partial f_{2}}{\partial u}=1, \quad \frac{\partial f_{2}}{\partial v}=2 v .
$$

Since all partial derivatives exist and continuous everywhere, F is C^{1} everywhere (in particular near $(1,-1,-1,2)$).

Step 2: Check $\mathbf{F}(\mathbf{p})=0$.
Clearly $\mathbf{F}(1,-1,-1,2)=(0,0)$.
Step 3: Check $\operatorname{det} \frac{\partial\left(f_{1}, f_{2}\right)}{\partial(u, v)}(\mathbf{p}) \neq 0$.

$$
\operatorname{det} \frac{\partial\left(f_{1}, f_{2}\right)}{\partial(u, v)}(\mathbf{p})=\left.\operatorname{det}\left(\begin{array}{cc}
\frac{\partial f_{1}}{\partial u} & \frac{\partial f_{1}}{\partial v} \\
\frac{\partial f_{2}}{\partial u} & \frac{\partial f_{2}}{\partial v}
\end{array}\right)\right|_{(1,-1,-1,2)}=\left.\operatorname{det}\left(\begin{array}{cc}
2 u & 1 \\
1 & 2 v
\end{array}\right)\right|_{(1,-1,-1,2)}=-9 \neq 0
$$

Hence, by Implicit Function Theorem, (u, v) can be expressed as a differentiable function of (x, y) near (1, -1, -1, 2).
b) To find $\frac{\partial u}{\partial x}$ (denote by u_{x}) and $\frac{\partial u}{\partial y}$ (denote by u_{y}), we differentiate both sides of each equation with respect to x (i.e. implicit differentiation), it gives

$$
\left\{\begin{array} { l }
{ 2 x + 2 u u _ { x } + v _ { x } = 0 , } \\
{ 6 x ^ { 2 } + u _ { x } + 2 v v _ { x } = 0 , }
\end{array} \Longrightarrow \left\{\begin{array}{l}
2 u u_{x}+v_{x}=-2 x, \\
u_{x}+2 v v_{x}=-6 x^{2},
\end{array} \Longrightarrow\left(\begin{array}{cc}
2 u & 1 \\
1 & 2 v
\end{array}\right)\binom{u_{x}}{v_{x}}=\binom{-2 x}{-6 x^{2}} .\right.\right.
$$

Solving the above system, near $(1,-1,-1,2)$, we have

$$
u_{x}=\frac{6 x^{2}-4 x v}{4 u v-1} \quad \text { and } \quad v_{x}=\frac{2 x-12 x^{2} u}{4 u v-1}
$$

Hence,

$$
u_{x}(1,-1,-1,2)=\frac{2}{9}, \quad v_{x}(1,-1,-1,2)=-\frac{14}{9}
$$

