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Problem 1

First, by the extreme-value theorem, we know that f assumes extreme values on D. Critical points:

∂f

∂x
= y = 0

∂f

∂y
= x = 0.

That is, the origin (0, 0). This is an interior point of D. Next, we need to consider f |∂D (the restriction of
f to ∂D) and look for extreme values here. Consider

g(x, y) = x2 + xy + y2 − 3.

Then ∂D = {(x, y) ∈ R2 : g(x, y) = 0}. Lagrange’s method therefore gives multiplier λ such that

∇f = λ∇g.

That is,

(y, x) = λ (2x+ y, x+ 2y) .

That is,

y = λ(2x+ y)

x = λ(2y + x).

That is,

y(1− λ) = λ2x

x(1− λ) = λ2y.
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Note first that we may assume λ 6= 0. Else we end up with with the critical point (0, 0) which does not
belong to ∂D. Similarly we may assume λ 6= 1. Thus, we find

y
1− λ
λ

= 2x

x
1− λ
λ

= 2y.

If x = 0, we see that y = 0 and vice versa. Hence, we may assume x 6= 0, y 6= 0. Then dividing we find

2x

y
=

2y

x

or

2x2 = 2y2.

That is, x2 = y2. That is, x = ±y. Substituted into g(x, y) = 0 we find 2x2 ± x2 = 3. If we choose + we get
3x2 = 3 or x2 = 1. That is, x = ±1 = y. If we choose −, we get x2 = 3 or x = ±

√
3 = −y. This gives the

points ±(1, 1) and
√
3(±1,∓1). That is, four points:

p1 = (1, 1), p2 = (−1,−1), p3 =
√
3(1,−1), p4 =

√
3(−1, 1).

Substituted into f(x, y) gives

f(0, 0) = 0, f(p1) = 1 = f(p2), f(p3) = −3 = f(p4).

Thus the maximum value of f on D is 1 and the minimum value is −3.

Problem 2

{
x =u3 + v3,

y =uv − v2,
=⇒

{
u =u(x, y),

v =v(x, y).

Differentiating the given equations with respect to x, we get

1 =3u2
∂u

∂x
+ 3v2

∂v

∂x
,

0 =v
∂u

∂x
+ (u− 2v)

∂v

∂x
.
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At u = v = 1, we have

1 =3
∂u

∂x
+ 3

∂v

∂x
,

0 =
∂u

∂x
− ∂v

∂x
.

Thus

∂u

∂x
=
∂v

∂x
=

1

6
.

Similarly, differentiating the given equations with respect to y and putting u = v = 1, we get

0 =3
∂u

∂y
+ 3

∂v

∂y
,

1 =
∂u

∂y
− ∂v

∂y
.

Thus

∂u

∂y
=

1

2
,

∂v

∂y
= −1

2
.

Finally, at u = v = 1, we have

det
∂(u, v)

∂(x, y)
=

∣∣∣∣∣ ∂u
∂x

∂v
∂x

∂u
∂y

∂v
∂y

∣∣∣∣∣ =
∣∣∣∣∣ 1

6
1
6

1
2 − 1

2

∣∣∣∣∣ = −1

6
.

Problem 3

a) Note that f(x, y) = eg(x,y) where g(x, y) = −2x2 − 4xy − y4. Thus, the critical points of f are those of
g. Computing we find

∇g(x, y) =
(
−4x− 4y,−4x− 4y3

)
= −4(x+ y, x+ y3).

Solving ∇g(x, y) = 0 gives x = −y and x − x3 = x(1 − x2) = 0. This latter one gives x2 = 1 or x = 0.
From x2 = 1 we find x = ±1 = −y. This gives the critical points

p1 = (0, 0), p2 = (1,−1), p3 = (−1, 1).
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b)

∂f

∂x
= eg

∂g

∂x
=⇒ ∂2f

∂x2
= eg

(
∂g

∂x

)2

+ eg
∂2g

∂x2
= eg

((
∂g

∂x

)2

+
∂2g

∂x2

)
.

By symmetry we also find

∂2f

∂y2
= eg

((
∂g

∂y

)2

+
∂2g

∂y2

)
,

and since f and g are smooth,

∂2f

∂x∂y
=

∂2f

∂y∂x
=

∂

∂y

∂f

∂x
= eg

∂g

∂y

∂g

∂x
+ eg

∂2g

∂y∂x
= e

(
∂g

∂y

∂g

∂x
+

∂2g

∂y∂x

)
.

Put fxx := A, fxy := B, fxy := C. Then the Hessian of f is given by

H(f) =

(
A B

B C

)

with determinant det(H(f)) = AC −B2. Computing we find

g(x, y) = −(2x2 + 4xy + y4)

∂g

∂x
(x, y) = −4(x+ y)

∂g

∂y
(x, y) = −4(x+ y3)

∂2g

∂x2
(x, y) = −4

∂2g

∂y2
(x, y) = −12y2

∂2g

∂y∂x
(x, y) = −4

Now consider each of the points p1, p2, p3 above. We find

• For p1 = (0, 0):

A(p1) = eg(0,0)((gx(0, 0))
2 + gxx(0, 0)) = e0(02 + (−4)) = −4

C(p1) = eg(0,0)((gy(0, 0)
2 + gyy(0, 0)) = e0(02 + 0) = 0

B(p1) = −4.
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Thus det(H(f))(p1) = −16 < 0. So p1 = (0, 0) is a saddle point.

• For p2 = (1,−1) :

A(p2) = e(1,−1)((gx(1,−1))2 + gxx(1,−1)) = e−(3−4)(0− 4) = −4e

C(p2) = e(1,−1)((gy(1,−1))2 + gyy(1,−1)) = e−(3−4)(0− 12) = −12e

B(p2) = −4.

Thus det(H(f))(p2) = 48e2 − 16 > 0, and A(p2) < 0. So p2 = (1,−1) is a local maximum.

• For p3 = (−1, 1): by symmetry, p3 is also a local maximum.

c) Let h(x, y) = x2 + y2 − 1. Then we are looking for the maximum and minimum values of g along
{(x, y) ∈ R2 : h(x, y) = 0}. Lagrange’s method gives multiplier λ such that

∇g = λ∇h.

That is,

5
(
(x− y)4,−(x− y)4

)
= 2λ(x, y).

That is,

(x− y)4 =
2

5
λx

−(x− y)4 =
2

5
λy.

Suppose that λ 6= 0. Then, x = −y. Substituted into h(x, y) = 0 gives 2x2 = 1 or x = ± 1√
2
= −y. This

gives the two points q1 = 1√
2
(1,−1) and q2 = 1√

2
(−1, 1). Substituted into the expression for g(x, y) gives

g(q1) =

(
1√
2

)5

(1− (−1))5 = (
√
2)5 = 4

√
2

g(q2) = −4
√
2.

Now consider λ = 0. We get ∇g(x, y) = 0 which gives x = y. Note that g|{x=y} = 0. Thus g(q1) and
g(q2) above are the maximum and minimum values of g along the given curve respectively.
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Problem 4

Let L = x+ λ(x+ y − z) + µ(x2 + 2y2 + 2z2 − 8). For critical points of L:

0 =
∂L

∂x
= 1 + λ+ 2µx (1)

0 =
∂L

∂y
= λ+ 4µy (2)

0 =
∂L

∂z
= −λ+ 4µz (3)

0 =
∂L

∂λ
= x+ y − z (4)

0 =
∂L

∂µ
= x2 + 2y2 + 2z2 − 8. (5)

From (2) and (3), we have µ(y + z) = 0. Thus µ = 0 or y + z = 0.

CASE I. µ = 0. Then λ = 0 by (2), and 1 = 0 by (1), so this case is not possible.

CASE II. y + z = 0. Then z = −y and, by (4), x = −2y. Therefore, by (5), 4y2 + 2y2 + 2y2 = 8, and so
y = ±1. From this case we obtain two points: (2,−1, 1) and (−2, 1,−1).

The function f(x, y, z) = x has maximum value 2 and minimum value −2 when restricted to the curve
x+ y = z, x2 + 2y2 + 2z2 = 8.

Problem 5

ˆ ∞
0

ˆ ∞
0

e−xye−y
2

dx dy =

(ˆ ∞
0

ye−y
2

dy

)(ˆ ∞
0

e−x dx

)
= −1

2
e−y

2

|∞0 =
1

2
.

Problem 6

a) Using polar coordinates:

lim
(x,y)→(0,0)

x4 + y4 + x3y3

x4 + y4
= lim
r→0

r4 cos4 θ + r4 sin4 θ + r6 cos3 θ sin3 θ

r4 cos4 θ + r4 sin4 θ
= 1.

b) Let f(x, y) = sin
(

x3y
x4+y4

)
. Then f(x, x) = sin

(
1
2

)
, while f(0, 1) = 0. Thus the limit lim(x,y)→(0,0) f(x, y)

does not exist.
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Problem 7

The chain rule gives

fx = frrx + fθθx

fy = frry + fθθy.

We have x2 + y2 = r2. Let z ∈ {x, y}. Partial differentiating with respect to z gives 2rrz = 2z. That is,
rz = z

r . That is, rx = cos θ, ry = sin θ. Let tx(θ) = cos(θ), ty = sin(θ) (the t here stands for trigonometric
and the subscript z is simply an index and not a partial differentiation). Then from z = rtz(θ), differentiating
with respect to z we find 1 = rztz + r(tz)

′θz. That is, θz = 1−rztz
r(rz)′

. That is,

θx =
1− rx cos θ
−r sin θ

=
1− cos2 θ

−r sin θ
=

sin θ

r

θy =
1− sin2 θ

r cos θ
=

cos θ

r
.

Note that u = (cos θ, sin θ),u⊥ = (− sin θ, cos θ) (recall u⊥ is u rotated by π
2 counter-clockwise). Thus,

∇(x,y)f = (frrx + fθθx, frry + fθθy)

=

(
fr cos θ − fθ

sin θ

r
, fr sin θ + fθ

cos θ

r

)
= fr(cos θ, sin θ) +

1

r
fθ(− sin θ, cos θ)

= fru+
1

r
fθu
⊥.

Hence we get that a = fr, b =
1
rfθ.

Problem 8

a) Rewrite the equations into f1 = x2 + 2y2 + u2 + v − 6 = 0 and f2 = 2x3 + 4y2 + u+ v2 − 9 = 0. Define
F : R4 → R2 to be

F(x, y, u, v) = (x2 + 2y2 + u2 + v − 6, 2x3 + 4y2 + u+ v2 − 9).

Step 1: Check F is C1 near (1,−1,−1,2).
A quick differentiation yields

∂f1
∂x

= 2x,
∂f1
∂y

= 4y,
∂f1
∂u

= 2u,
∂f1
∂v

= 1,
∂f2
∂x

= 6x2,
∂f2
∂y

= 8y,
∂f2
∂u

= 1,
∂f2
∂v

= 2v.
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Since all partial derivatives exist and continuous everywhere, F is C1 everywhere (in particular near (1,−1,−1, 2)).

Step 2: Check F(p) = 0.
Clearly F(1,−1,−1, 2) = (0, 0).

Step 3: Check det ∂(f1,f2)∂(u,v) (p) 6= 0.

det
∂(f1, f2)

∂(u, v)
(p) = det

(
∂f1
∂u

∂f1
∂v

∂f2
∂u

∂f2
∂v

)∣∣∣∣∣
(1,−1,−1,2)

= det

(
2u 1

1 2v

)∣∣∣∣∣
(1,−1,−1,2)

= −9 6= 0.

Hence, by Implicit Function Theorem, (u, v) can be expressed as a differentiable function of (x, y) near
(1,−1,−1, 2).

b) To find ∂u
∂x (denote by ux) and ∂u

∂y (denote by uy), we differentiate both sides of each equation with respect
to x (i.e. implicit differentiation), it gives2x+ 2uux + vx = 0,

6x2 + ux + 2vvx = 0,
=⇒

2uux + vx = −2x,

ux + 2vvx = −6x2,
=⇒

(
2u 1

1 2v

)(
ux

vx

)
=

(
−2x
−6x2

)
.

Solving the above system, near (1,−1,−1, 2), we have

ux =
6x2 − 4xv

4uv − 1
and vx =

2x− 12x2u

4uv − 1
.

Hence,

ux(1,−1,−1, 2) =
2

9
, vx(1,−1,−1, 2) = −

14

9
.
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