Exercises
 Vector Calculus (MA1103)

Exercise 9

Exercise 1 (5.3: 3)

Evaluate the following iterated integrals and draw the regions D determined by the limits. State whether the regions are x-simple, y-simple, or both.
a) $\int_{0}^{1} \int_{0}^{x^{2}} d y d x$
b) $\int_{1}^{2} \int_{2 x}^{3 x+1} d y d x$
c) $\int_{0}^{1} \int_{1}^{e^{x}}(x+y) d y d x$
d) $\int_{0}^{1} \int_{x^{3}}^{x^{2}} y d y d x$

Exercise 2 (5.3: 6)
Using double integrals, determine the area of an ellipse with semiaxis of length a and b.
Exercise 3 (5.3: 12)
Evaluate the following double integral:

$$
\iint_{D} \cos (y) d x d y
$$

where the region D is bounded by $y=2 x, y=x, x=\pi$, and $x=2 \pi$.
Exercise 4 (5.4: 5)
Change the order of integration and evaluate:

$$
\int_{0}^{1} \int_{\sqrt{y}}^{1} e^{x^{3}} d x d y
$$

Exercise 5 (5.4: 7)
If $f(x, y)=e^{\sin \left(x^{2}+y^{2}\right)}$ and $D=[-\pi, \pi] \times[-\pi, \pi]$, show that

$$
\frac{1}{e} \leq \iint_{D} f(x, y) d A \leq e
$$

Exercise 6 (5.5: 2)
Evaluate the following triple integral

$$
\iiint_{W} \sin (x) d x d y d z
$$

where W is the solid given by $0 \leq x \leq \pi, 0 \leq y \leq 1$, and $0 \leq z \leq x$.

Exercise 7 (5.5: 30)
Let W be the region bounded by the planes $x=0, y=0, z=0, x+y=1$, and $z=x+y$.
a) Find the volume of W
b) Evaluate $\iiint_{W} x d x d y d z$
c) Evaluate $\iiint_{W} y d x d y d z$

Exercise 8 (A 5.5: 31)
Let f be continuous and let B_{ε} be the ball of radius ε centered at the point $\left(x_{0}, y_{0}, z_{0}\right)$. Let $\operatorname{vol}\left(B_{\varepsilon}\right)$ be the volume of B_{ε}. Prove that

$$
\lim _{\varepsilon \rightarrow 0} \frac{1}{\operatorname{vol}\left(B_{\varepsilon}\right)} \iiint_{B_{\varepsilon}} f(x, y, z) d V=f\left(x_{0}, y_{0}, z_{0}\right)
$$

Exercise 9 (6.2: 3)
Let D be the unit disk: $x^{2}+y^{2} \leq 1$. Evaluate

$$
\iint_{D} e^{x^{2}+y^{2}} d x d y
$$

by making a change of variables to polar coordinates.
Exercise 10 (6.2: 5)
Let $T(u, v)=(x(u, v), y(u, v))$ be the mapping defined by $T(u, v)=(4 u, 2 u+3 v)$. Let D^{*} be the rectangle $[0,1] \times[1,2]$. Find $D=T\left(D^{*}\right)$ and evaluate
a) $\iint_{D} x y d x d y$
b) $\iint_{D}(x-y) d x d y$

A: This exercise is more theoretical (and might therefore be more difficult).

