Exercises
 Vector Calculus (MA1103)

Exercise 8

Exercise 1 (Proof of Theorem 4.2)

Show that if $\mathbf{F} \in C^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ is a vector field, then $\operatorname{div} \operatorname{curl} \mathbf{F}=0$.
Exercise 2 (4.4: 8)
Sketch a few flow lines for $\mathbf{F}(x, y)=(-3 x,-y)$. Calculate $\operatorname{div} \mathbf{F}$ and explain why your answer is consistent with your sketch.

Exercise 3 (4.4: 24)
Suppose that $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is a C^{2} function (twice continuously differentiable). Which of the following expressions are meaningful, and which are nonsense? For those which are meaningful, decide whether the expression defines a scalar (that is real-valued) function or a vector field.
a) $\operatorname{curl}(\nabla f)$
b) $\nabla(\operatorname{curl} f)$
c) $\operatorname{div}(\nabla f)$
d) $\nabla(\operatorname{div} f)$
e) $\operatorname{curl}(\operatorname{div} f)$
f) $\operatorname{div}(\operatorname{curl} f)$

Exercise 4 (4.4: 26)

Suppose that $f, g, h: \mathbb{R} \rightarrow \mathbb{R}$ are differentiable. Show that the vector field $\mathbf{F}(x, y, z)=(f(x), g(y), h(z))$ is irrotational.

Exercise 5 (4.4: 37)
Let $\mathbf{F}(x, y, z)=\left(2 x z^{2}, 1, y^{3} z x\right)$ and $f(x, y, z)=x^{2} y$. Compute the following quantities
a) ∇f
b) $\operatorname{curl} \mathbf{F}$
c) $\mathbf{F} \times(\nabla f)$
d) $\mathbf{F} \cdot(\nabla f)$

Exercise 6 (5.2: 2)
Evaluate each of the following integrals if $R=[0,1] \times[0,1]$.
a) $\iint_{R} x^{m} y^{n} d x d y$, where $m, n>0$
b) $\iint_{R}(a x+b y+c) d x d y$
c) $\iint_{R} \sin (x+y) d x d y$

Exercise 7 (5.2: 9)
Let f be continuous on $[a, b]$ and g continuous on $[c, d]$. Show that

$$
\iint_{R}[f(x) g(y)] d x d y=\left[\int_{a}^{b} f(x) d x\right]\left[\int_{c}^{d} g(y) d y\right]
$$

where $R=[a, b] \times[c, d]$.
Exercise 8 (5.2: 11)
Compute the volume of the solid bounded by the graph $z=x^{2}+y$, the rectangle $R=[0,1] \times[1,2]$ and the vertical sides of R.

Exercise 9 (A 5.2: 18)
Let f be continuous, $f \geq 0$, on the rectangle R. If $\iint_{R} f d A=0$, prove that $f=0$ on R.

A: This exercise is more theoretical (and might therefore be more difficult).

