Exercises

Vector Calculus (MA1103)

Exercise 2

Exercise 1 (2.1: 6)
Let $f(x, y)=9 x^{2}+y^{2}$. Sketch the following.
a) The level curves for f of values $c=0,1,9$
b) The sections of the graph of f in the planes $x=-1, x=0$ and $x=1$
c) The sections of the graph of f in the planes $y=-1, y=0$ and $y=1$
d) The graph of f

Exercise 2 (2.1: 9)
Let S be the surface in \mathbb{R}^{3} defined by the equation $x^{2} y^{6}-2 z=3$.
a) Find a real-valued function $f(x, y, z)$ of three variables and a constant c such that S is the level set of f of value c
b) Find a real-valued function $g(x, y)$ of two variables such that S is the graph of g

Exercise 3 (2.1: 18)
Draw the level curves (in the $x y$ plane) for $f(x, y)=\frac{x}{y}$ for $c=0,1,2,-1,-2$
Exercise 4 (2.1: 41)
Let $f: \mathbb{R}^{2} \backslash\{0\} \rightarrow \mathbb{R}$ be given in polar coordinates by $f(r, \theta)=\frac{\cos (2 \theta)}{r^{2}}$. Sketch a few level curves in the $x y$ plane. $\left(\mathbb{R}^{2} \backslash\{0\}:=\{x \in \mathbb{R} \mid x \neq 0\}\right)$

Exercise 5 (2.2: 3a) and 4a))
Compute the limits
i) $\lim _{(x, y) \rightarrow(0,1)} x^{3} y$
ii) $\lim _{(x, y) \rightarrow(0,1)} e^{x} y$

Exercise 6 (2.2: 17)
Find the limit $\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{2}+3 y^{2}}{\log \left(x^{2}+y^{2}\right)}$
Hint: Use polar coordinates and L'Hospital
Exercise 7 (2.2: 19)
Show that the subset $B:=\left\{(x, y) \in \mathbb{R}^{2} \mid y>0\right\}$ of \mathbb{R}^{2} is open.
Exercise $8(\mathbf{T} 2.2: 28)$ a) Prove that for $x \in \mathbb{R}^{n}$ and $s<t D_{s}(x) \subset D_{t}(x)$.
b) Prove that if U and V are neighborhoods of $x \in \mathbb{R}^{n}$, then so are $U \cap V$ and $U \cap V$.
c) Prove that the boundary points of an open interval $(a, b) \subset \mathbb{R}$ are the points a and b.
\mathbf{T} : This exercise is more theoretical (and might therefore be more difficult).

