Exercises

Vector Calculus (MA1103)

Exercise 10

Exercise 1 (6.2: 23)
Let B be the unit ball. Evaluate

$$
\iiint_{B} \frac{1}{\sqrt{2+x^{2}+y^{2}+z^{2}}} d x d y d z
$$

Exercise 2 (6.2: 29)
Integrate $f(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}} e^{-\left(x^{2}+y^{2}+z^{2}\right)}$ over the region W, where W is the solid bounded by the two spheres $x^{2}+y^{2}+z^{2}=a^{2}$ and $x^{2}+y^{2}+z^{2}=b^{2}$ with $0<b<a$.

Exercise 3 (6.3: 3)
Find the average of $f(x, y)=y \sin (x y)$ over $D=[0, \pi] \times[0, \pi]$.
Exercise 4 (6.3: 5)
Find the center of mass of the region between $y=x^{2}$ and $y=x$ if the density is $m(x, y)=x+y$.
Exercise 5 (6.3: 7/8)
A sculptured gold plate D is defined by $0 \leq x \leq 2 \pi$ and $0 \leq y \leq \pi$ (centimeters) and has mass density $\delta(x, y)=y^{2} \sin ^{2}(4 x)+2$ (grams per square centimeter).
a) If gold sells for $\$ 7$ per gram, how much is the gold in the plate worth?
b) What is the average mass density in grams per square centimeter?

Exercise 6 (7.1: 11)
Evaluate the following path integrals $\int_{c} f(x, y, z) d s$, where
a) $f(x, y, z)=e^{\sqrt{z}}$, and $c:[0,1] \rightarrow \mathbb{R}^{3}, t \mapsto\left(1,2, t^{2}\right)$.
b) $f(x, y, z)=y z$, and $c:[1,3] \rightarrow \mathbb{R}^{3}, t \mapsto(t, 3 t, 2 t)$.

Remark

If f is a continuous scalar function on the path a path $c:[a, b] \rightarrow \mathbb{R}^{n}$, then the average of f along the path c is given by

$$
\frac{1}{l(c)} \int_{c} f d s
$$

where $l(c):=\int_{a}^{b}\left\|c^{\prime}(t)\right\| d t$ is the length of the path c.

Exercise 7 (7.1: 16b))
Show that the average value of $f(x, y, z)=x^{2}+y^{2}+z^{2}$ along the path $c:[0,2 \pi] \rightarrow \mathbb{R}^{3}, t \mapsto(\cos (t), \sin (t), t)$ is $1+\frac{4 \pi^{2}}{3}$.

Exercise 8 (7.1: 17)

Find the average y coordinate of the points on the semicircle parametrized by $c:[0, \pi] \rightarrow \mathbb{R}^{3}, \theta \mapsto$ $(0, a \sin (\theta), a \cos (\theta))$, where $a>0$.

Exercise 9 (7.1: 20)
Show that the path integral of a continuous function $f(x, y)$ over a path C given by the graph of a continuously differentiable function $g(x), a \leq x \leq b$ is given by

$$
\int_{C} f d s=\int_{a}^{b} f(x, g(x)) \sqrt{1+\left[g^{\prime}(x)\right]^{2}} d x
$$

Conclude that if $g:[a, b] \rightarrow \mathbb{R}$ is continuously differentiable, then the length of the graph of g on $[a, b]$ is given by

$$
\int_{C} d s=\int_{a}^{b} \sqrt{1+\left[g^{\prime}(x)\right]^{2}} d x
$$

Exercise 10

Find the length of the graph of $g:[0,1] \rightarrow \mathbb{R}, x \mapsto \frac{1}{\sqrt{2}} x^{2}+\frac{1}{3} x^{3}$.

