Exercises Vector Calculus (MA1103)

Exercise 10

Exercise 1 (6.2: 23)

Let B be the unit ball. Evaluate

$$\iiint_B \frac{1}{\sqrt{2+x^2+y^2+z^2}} \, dx \, dy \, dz.$$

Exercise 2 (6.2: 29)

Integrate $f(x, y, z) = \sqrt{x^2 + y^2 + z^2}e^{-(x^2 + y^2 + z^2)}$ over the region W, where W is the solid bounded by the two spheres $x^2 + y^2 + z^2 = a^2$ and $x^2 + y^2 + z^2 = b^2$ with 0 < b < a.

Exercise 3 (6.3: 3)

Find the average of $f(x, y) = y \sin(xy)$ over $D = [0, \pi] \times [0, \pi]$.

Exercise 4 (6.3: 5)

Find the center of mass of the region between $y = x^2$ and y = x if the density is m(x, y) = x + y.

Exercise 5 (6.3: 7/8)

A sculptured gold plate D is defined by $0 \le x \le 2\pi$ and $0 \le y \le \pi$ (centimeters) and has mass density $\delta(x, y) = y^2 \sin^2(4x) + 2$ (grams per square centimeter).

- a) If gold sells for \$7 per gram, how much is the gold in the plate worth?
- b) What is the average mass density in grams per square centimeter?

Exercise 6 (7.1: 11)

Evaluate the following path integrals $\int_{c} f(x, y, z) ds$, where

- a) $f(x, y, z) = e^{\sqrt{z}}$, and $c : [0, 1] \to \mathbb{R}^3, t \mapsto (1, 2, t^2)$.
- b) f(x, y, z) = yz, and $c : [1, 3] \to \mathbb{R}^3, t \mapsto (t, 3t, 2t)$.

Please turn the page

Remark

If f is a continuous scalar function on the path a path $c : [a, b] \to \mathbb{R}^n$, then the average of f along the path c is given by

$$\frac{1}{l(c)}\int_c f\,ds,$$

where $l(c) := \int_a^b \|c'(t)\| dt$ is the length of the path c.

Exercise 7 (7.1: 16b))

Show that the average value of $f(x, y, z) = x^2 + y^2 + z^2$ along the path $c : [0, 2\pi] \to \mathbb{R}^3, t \mapsto (\cos(t), \sin(t), t)$ is $1 + \frac{4\pi^2}{3}$.

Exercise 8 (7.1: 17)

Find the average y coordinate of the points on the semicircle parametrized by $c : [0, \pi] \to \mathbb{R}^3, \theta \mapsto (0, a \sin(\theta), a \cos(\theta))$, where a > 0.

Exercise 9 (7.1: 20)

Show that the path integral of a continuous function f(x, y) over a path C given by the graph of a continuously differentiable function $g(x), a \le x \le b$ is given by

$$\int_{C} f \, ds = \int_{a}^{b} f(x, g(x)) \sqrt{1 + [g'(x)]^2} \, dx.$$

Conclude that if $g:[a,b] \to \mathbb{R}$ is continuously differentiable, then the length of the graph of g on [a,b] is given by

$$\int_C \, ds = \int_a^b \sqrt{1 + [g'(x)]^2} \, dx.$$

Exercise 10

Find the length of the graph of $g: [0,1] \to \mathbb{R}, x \mapsto \frac{1}{\sqrt{2}}x^2 + \frac{1}{3}x^3$.

The exercises can be also found (under the given number in brackets) in the book Vector Calculus by J. E. Marsden and A. Tromba.