Norges teknisk-naturvitenskapelige universitet
Department of Mathematical
Sciences

1 a) Assume that we had an x for which

$$
x(t)=x_{0}+\int_{t_{0}}^{t} f(s, x(s)) d s .
$$

By taking the derivative on both sides, we find that

$$
x^{\prime}(t)=f(t, x(t))
$$

and verifying that $x\left(t_{0}\right)=x_{0}$ is trivial.
b) We need to verify that $T(y) \in C(J)$ and that $\sup _{t \in J}\left|x_{0}-T(y)(t)\right| \leq c \beta$. That $T(y)$ is continuous follows from that f is continuous on R. We further verify that

$$
\sup _{t \in J}\left|x_{0}-T(y)(t)\right|=\sup _{t \in J}\left|\int_{t_{0}}^{t} f(s, y(s)) d s\right| \leq \int_{t_{0}}^{t_{0}+\beta} c d s=c \beta
$$

c) For each $t \in J$ (which is where y_{1}, y_{2} are defined), we have that

$$
\begin{aligned}
\left|T\left(y_{1}\right)(t)-T\left(y_{2}\right)(t)\right| & =\left|\int_{t_{0}}^{t}\left[f\left(s, y_{1}(s)\right)-f\left(s, y_{2}(s)\right)\right] d s\right| \\
& \leq \int_{t_{0}}^{t}\left|f\left(s, y_{1}(s)\right)-f\left(s, y_{2}(s)\right)\right| d s \\
& \leq \int_{t_{0}}^{t_{0}+\beta} k \sup _{t \in J}\left|y_{1}(t)-y_{2}(t)\right|=k \beta d_{\infty}\left(y_{1}, y_{2}\right) .
\end{aligned}
$$

d) To apply Banach's fixed point theorem, we only need that T is contractive which is guaranteed by $k \beta<1 \Longleftrightarrow \beta<\frac{1}{k}$.
e) Applying Banach's fixed point theorem, we get that there exists an $x \in X$ such that $T(x)=x$. By the result in a), the desired conclusion follows.

02 On the square $|t|<1,|x|<1$, the function $f(t, x)=-t x$ is clearly continuous and bounded. The Lipschitz constant for f in this square is 1 which is finite and thus the conditions of Picard-Lindelöf are satisfied.
For the Picard iteration, we start with $x_{0}(t)=1$ to match the initial condition and find

$$
\begin{aligned}
& x_{1}(t)=1-\int_{0}^{t} s \cdot 1 d s=1-\frac{t^{2}}{2}, \\
& x_{2}(t)=1-\int_{0}^{t} s \cdot\left(1-s^{2} / 2\right) d s=1-\frac{t^{2}}{2}+\frac{t^{4}}{2 \cdot 4}, \\
& x_{3}(t)=1-\int_{0}^{t} s \cdot\left(1-s^{2} / 2+s^{4} /(2 \cdot 4)\right) d s=1-\frac{t^{2}}{2}+\frac{t^{4}}{2 \cdot 4}-\frac{t^{6}}{2 \cdot 4 \cdot 6} .
\end{aligned}
$$

The pattern we're supposed to notice is that for each iteration, a new term gets added which is of a predictable format. Would we have continued in this fashion, we would have gotten a series of the form

$$
1-\frac{t^{2}}{2}+\frac{t^{4}}{2 \cdot 4}-\frac{t^{6}}{2 \cdot 4 \cdot 6}+\frac{t^{8}}{2 \cdot 4 \cdot 6 \cdot 8}-\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{n!2^{n}}=\sum_{n=0}^{\infty} \frac{\left(\frac{-x^{2}}{2}\right)^{n}}{n!}=e^{-x^{2} / 2}
$$

3 Using the provided formula, we compute

$$
\begin{aligned}
y(0.1) & \approx y_{1}=y_{0}+\frac{h}{2}\left[f\left(x_{0}, y_{0}\right)+f\left(x_{1}, y_{0}+h f\left(x_{0}, y_{0}\right)\right)\right] \\
& =1+\frac{0.1}{2}[0+1+0.1+1+0.1 \cdot(0+1)]=1.11 \\
y(0.2) & \approx y_{2}=y_{1}+\frac{h}{2}\left[f\left(x_{1}, y_{1}\right)+f\left(x_{2}, y_{1}+h f\left(x_{1}, y_{1}\right)\right)\right] \\
& =1.11+\frac{0.1}{2}[0.1+1.11+0.2+1.11+0.1 \cdot(0.1+1.11)]=1.24205
\end{aligned}
$$

4 a) We know that any linear combination of the two solutions is also a solutions, we therefore make the ansatz

$$
y(x)=A \sin (2 x)+B \cos (2 x) \Longrightarrow y^{\prime}(x)=2 A \cos (2 x)-2 B \sin (2 x)
$$

which yields

$$
B=2, A=1 / 2 \Longrightarrow y(x)=\frac{1}{2} \sin (2 x)+2 \cos (2 x)
$$

b) Again we make the ansatz

$$
y(x)=A e^{-\frac{1}{2} x}+B x e^{-\frac{1}{2} x} \Longrightarrow y^{\prime}(x)=\frac{-1}{2} e^{-x / 2}[A+B(x-2)]
$$

From $y^{\prime}(2)=2$ we get that $A=-4 e$ and from $y(2)=0$ we get $A+2 B=0$ which yields

$$
y(x)=-4 e^{-x / 2+1}+2 x e^{-x / 2+1}
$$

5 a) We compute the derivatives of y as

$$
\begin{aligned}
y(x) & =A x^{2}+B x+C \\
\Longrightarrow y^{\prime}(x) & =2 A x+B \\
\Longrightarrow y^{\prime \prime}(x) & =2 A
\end{aligned}
$$

Plugging this into the differential equation yields

$$
\begin{aligned}
y^{\prime \prime}+3 y^{\prime}-y & =2 A+6 A x+3 B-A x^{2}-B x-C \\
& =(-A) x^{2}+(6 A-B) x+(2 A+3 B-C)
\end{aligned}
$$

Putting the above to be equal to $4 x$ force the values $A=0, B=-4, C=-12$ and so we get

$$
y(x)=-4 x-12
$$

as the solution.
b) We compute the derivatives of y as

$$
\begin{aligned}
y(x) & =A \sin (2 x)+B \cos (2 x) \\
\Longrightarrow y^{\prime}(x) & =2 A \cos (2 x)-2 B \sin (2 x) \\
\Longrightarrow y^{\prime \prime}(x) & =-4 A \sin (2 x)-4 B \cos (2 x) .
\end{aligned}
$$

Plugging this into the differential equation yields

$$
\begin{aligned}
y^{\prime \prime}+2 y^{\prime}-2 y & =-4 A \sin (2 x)-4 B \cos (2 x)+4 A \cos (2 x)-4 B \sin (2 x)-2 A \sin (2 x)-2 B \cos (2 x) \\
& =(-4 A-4 B-2 A) \sin (2 x)+(-4 B+4 A-2 B) \cos (2 x) .
\end{aligned}
$$

Putting the above to be equal to $\sin (2 x)$ force the values $A=\frac{-3}{26}, B=\frac{-1}{13}$ and so we get

$$
y(x)=\frac{-3}{26} \sin (2 x)-\frac{1}{13} \cos (2 x)
$$

as the solution.
c) We compute the derivatives of y as

$$
\begin{aligned}
y(x) & =(A+B x) e^{x} \\
\Longrightarrow y^{\prime}(x) & =(A+B+B x) e^{x} \\
\Longrightarrow y^{\prime \prime}(x) & =(A+2 B+B x) e^{x} .
\end{aligned}
$$

Plugging this into the differential equation yields

$$
y^{\prime \prime}+8 y^{\prime}-6 y=(A+2 B+B x+8 A+8 B+8 B x-6 A-6 B x) e^{x}
$$

Putting the above to be equal to $x e^{x}$ force the values $A=\frac{-10}{9}, B=\frac{1}{3}$ and so we get

$$
y(x)=\frac{-10 e^{x}}{9}+\frac{x e^{x}}{3} .
$$

as the solution.

