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1 a) Assume that we had an x for which

x(t) = x0 +

∫ t

t0

f(s, x(s)) ds.

By taking the derivative on both sides, we find that

x′(t) = f(t, x(t))

and verifying that x(t0) = x0 is trivial.

b) We need to verify that T (y) ∈ C(J) and that supt∈J |x0 − T (y)(t)| ≤ cβ. That
T (y) is continuous follows from that f is continuous on R. We further verify
that

sup
t∈J

|x0 − T (y)(t)| = sup
t∈J

∣∣∣∣∫ t

t0

f(s, y(s)) ds

∣∣∣∣ ≤ ∫ t0+β

t0

c ds = cβ.

c) For each t ∈ J (which is where y1, y2 are defined), we have that

|T (y1)(t)− T (y2)(t)| =
∣∣∣∣∫ t

t0

[f(s, y1(s))− f(s, y2(s))] ds

∣∣∣∣
≤

∫ t

t0

|f(s, y1(s))− f(s, y2(s))| ds

≤
∫ t0+β

t0

k sup
t∈J

|y1(t)− y2(t)| = kβd∞(y1, y2).

d) To apply Banach’s fixed point theorem, we only need that T is contractive which
is guaranteed by kβ < 1 ⇐⇒ β < 1

k .

e) Applying Banach’s fixed point theorem, we get that there exists an x ∈ X such
that T (x) = x. By the result in a), the desired conclusion follows.

2 On the square |t| < 1, |x| < 1, the function f(t, x) = −tx is clearly continuous and
bounded. The Lipschitz constant for f in this square is 1 which is finite and thus the
conditions of Picard-Lindelöf are satisfied.
For the Picard iteration, we start with x0(t) = 1 to match the initial condition and
find

x1(t) = 1−
∫ t

0
s · 1 ds = 1− t2

2
,

x2(t) = 1−
∫ t

0
s · (1− s2/2) ds = 1− t2

2
+

t4

2 · 4
,

x3(t) = 1−
∫ t

0
s · (1− s2/2 + s4/(2 · 4)) ds = 1− t2

2
+

t4

2 · 4
− t6

2 · 4 · 6
.
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The pattern we’re supposed to notice is that for each iteration, a new term gets added
which is of a predictable format. Would we have continued in this fashion, we would
have gotten a series of the form

1− t2

2
+

t4

2 · 4
− t6

2 · 4 · 6
+

t8

2 · 4 · 6 · 8
− · · · =

∞∑
n=0

(−1)nx2n

n!2n
=

∞∑
n=0

(−x2

2 )n

n!
= e−x2/2.

3 Using the provided formula, we compute

y(0.1) ≈ y1 = y0 +
h

2

[
f(x0, y0) + f(x1, y0 + hf(x0, y0))

]
= 1 +

0.1

2

[
0 + 1 + 0.1 + 1 + 0.1 · (0 + 1)

]
= 1.11,

y(0.2) ≈ y2 = y1 +
h

2

[
f(x1, y1) + f(x2, y1 + hf(x1, y1))

]
= 1.11 +

0.1

2

[
0.1 + 1.11 + 0.2 + 1.11 + 0.1 · (0.1 + 1.11)

]
= 1.24205.

4 a) We know that any linear combination of the two solutions is also a solutions,
we therefore make the ansatz

y(x) = A sin(2x) +B cos(2x) =⇒ y′(x) = 2A cos(2x)− 2B sin(2x)

which yields

B = 2, A = 1/2 =⇒ y(x) =
1

2
sin(2x) + 2 cos(2x).

b) Again we make the ansatz

y(x) = Ae−
1
2
x +Bxe−

1
2
x =⇒ y′(x) =

−1

2
e−x/2[A+B(x− 2)].

From y′(2) = 2 we get that A = −4e and from y(2) = 0 we get A + 2B = 0
which yields

y(x) = −4e−x/2+1 + 2xe−x/2+1.

5 a) We compute the derivatives of y as

y(x) = Ax2 +Bx+ C

=⇒ y′(x) = 2Ax+B

=⇒ y′′(x) = 2A.

Plugging this into the differential equation yields

y′′ + 3y′ − y = 2A+ 6Ax+ 3B −Ax2 −Bx− C

= (−A)x2 + (6A−B)x+ (2A+ 3B − C).
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Putting the above to be equal to 4x force the values A = 0, B = −4, C = −12
and so we get

y(x) = −4x− 12

as the solution.

b) We compute the derivatives of y as

y(x) = A sin(2x) +B cos(2x)

=⇒ y′(x) = 2A cos(2x)− 2B sin(2x)

=⇒ y′′(x) = −4A sin(2x)− 4B cos(2x).

Plugging this into the differential equation yields

y′′ + 2y′ − 2y = −4A sin(2x)− 4B cos(2x) + 4A cos(2x)− 4B sin(2x)− 2A sin(2x)− 2B cos(2x)

= (−4A− 4B − 2A) sin(2x) + (−4B + 4A− 2B) cos(2x).

Putting the above to be equal to sin(2x) force the values A = −3
26 , B = −1

13 and
so we get

y(x) =
−3

26
sin(2x)− 1

13
cos(2x)

as the solution.

c) We compute the derivatives of y as

y(x) = (A+Bx)ex

=⇒ y′(x) = (A+B +Bx)ex

=⇒ y′′(x) = (A+ 2B +Bx)ex.

Plugging this into the differential equation yields

y′′ + 8y′ − 6y = (A+ 2B +Bx+ 8A+ 8B + 8Bx− 6A− 6Bx)ex

Putting the above to be equal to xex force the values A = −10
9 , B = 1

3 and so
we get

y(x) =
−10ex

9
+

xex

3
.

as the solution.
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