Norges teknisk-naturvitenskapelige universitet
Department of Mathematical
Sciences

1 a)

$$
\sin (i x)=\frac{e^{i i x}-e^{-i i x}}{2 i}=\frac{-i}{2}\left(e^{-x}-e^{x}\right)=\frac{i}{2}\left(e^{x}-e^{-x}\right)=i \sinh (x)
$$

b)

$$
\begin{aligned}
\cos (a+b) & =\operatorname{Re}\left(e^{i(a+b)}\right)=\operatorname{Re}\left(e^{i a} e^{i b}\right) \\
& =\operatorname{Re}((\cos (a)+i \sin (a))(\cos (b)+i \sin (b))) \\
& =\cos (a) \cos (b)-\sin (a) \sin (b)
\end{aligned}
$$

c)

$$
\begin{aligned}
\sin (2 x) & =\operatorname{Im}\left(e^{i 2 x}\right)=\operatorname{Im}\left(\left(e^{i x}\right)^{2}\right) \\
& =\operatorname{Im}\left(\left(\cos (x)+i \sin (x)^{2}\right)\right) \\
& =\cos (x) \sin (x)+\sin (x) \cos (x)=2 \sin (x) \cos (x)
\end{aligned}
$$

2 Recall that Newton's method can be written as

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

a) We have $f^{\prime}(x)=3 x^{2}+2$ and so we get

$$
\begin{aligned}
& x_{0}=0 \\
& x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}=0-\frac{-1}{2}=\frac{1}{2} \\
& x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}=\frac{1}{2}-\frac{\frac{1}{8}+1-1}{\frac{3}{4}+2}=\frac{10}{22} .
\end{aligned}
$$

b) We approximate the minimum value by searching for a zero of $f^{\prime}(x)=2 x-2-$ $\sin (2 x)$. To do so we also need to compute $f^{\prime \prime}(x)=2-2 \cos (2 x)$ which yields

$$
x_{1}=1-\frac{2 \cdot 1-2-\sin (2 \cdot 1)}{2-\cos (2 \cdot 1)} \approx 1.3763 .
$$

We thus approximate the minimum value as

$$
f\left(x_{1}\right) \approx f(1.3763) \approx 0.1782
$$

3 a) This is a subsequence of $\left(x_{0}^{n}\right)_{n}$ which converges to zero as $n \rightarrow \infty$ which can be seen by e.g. noting that the sum $\sum_{n} x_{0}^{n}$ is convergent and hence the terms must approach zero.
b) This time we use the Banach fixed point theorem. By the mean value theorem we have that

$$
|T(x)-T(y)| \leq C|x-y|
$$

if C is a bound for the derivative of $\frac{1}{1+x^{2}}$. Using standard methods, we can verify that $C<1$ and so the desired conclusion follows by Banach's fixed point theorem.
c) Here we cannot use the same approach directly since the derivative of cosine can take the value 1 . To get around this, note that the first iterate $\cos \left(x_{0}\right) \in[-1,1]$ and $\left|\frac{d}{d x} \cos (x)\right|<1$ for $x \in[0,1]$ and so we can apply the fixed point theorem on $[-1,1]$.

4 a) Our desired operator is

$$
T(f)(x)=\lambda \int_{a}^{b} k(x, y) f(y) d y+g(x) .
$$

b) We estimate

$$
\begin{aligned}
|T(f)(x)-T(g)(x)| & =\left|\lambda \int_{a}^{b} k(x-y)[f(y)-g(y)] d y\right| \\
& \leq|\lambda| \int_{a}^{b}|k(x, y)||f(y)-g(y)| d y \\
& \leq|\lambda|| | k d(f, g) \int_{a}^{b} d y=|\lambda|| | k d_{\infty}(f, g)|b-a|
\end{aligned}
$$

where we used that $|k(x, y)| \leq\|k\|_{\infty}<\infty$ and the triangle inequality for integrals twice.
c) To apply the Banach fixed point theorem and get existance of a solution, we need the constant $|\lambda|\|k\|_{\infty}|b-a|$ to be less than 1 .
d) In this case $|b-a|=2,|\lambda|=\frac{1}{2 \pi},\|k\|_{\infty}=1$ and so the above condition is satisfied.

