Norges teknisk-naturvitenskapelige universitet
Department of Mathematical
Sciences

Løsningsforslag - Øving 1

11 Let b, b^{\prime} be two least upper bounds for $X \subset \mathbb{R}$. Then since b^{\prime} is an upper bound and b is a least upper bound,

$$
b \leq b^{\prime} .
$$

Similarly, since b is an upper bound and b^{\prime} is a least upper bound,

$$
b^{\prime} \leq b
$$

Putting this together we get

$$
b \leq b^{\prime} \leq b \Longrightarrow b=b^{\prime}
$$

and the least upper bound is unique.
Let l, l^{\prime} be two greatest lower bounds for $X \subset \mathbb{R}$. Then since l^{\prime} is a lower bound and l is a greatest lower bound,

$$
l^{\prime} \leq l
$$

Similarly, since l is a lower bound and l^{\prime} is a greatest lower bound,

$$
l \leq l^{\prime} .
$$

Putting this together we get

$$
l^{\prime} \leq l \leq l^{\prime} \Longrightarrow l=l^{\prime}
$$

and the greatest lower bound is unique.

2 a) For any $a \in A$ and $b \in B, a \leq \sup A$ and $b \leq \sup B$ and so for each element $c \in A+B, c \leq \sup A+\sup B$ which implies that

$$
\sup (A+B) \leq \sup A+\sup B
$$

Next suppose towards a contradiction that $\sup (A+B)<\sup A+\sup B$ and let $\varepsilon=\sup A+\sup B-\sup (A+B)>0$. By the definitions of $\sup A$ and $\sup B$ we can find $a \in A$ and $b \in B$ such that

$$
\begin{aligned}
& a>\sup A-\frac{\varepsilon}{2}, \\
& b>\sup B-\frac{\varepsilon}{2}
\end{aligned}
$$

Therefore, using the definition of ε,

$$
a+b>\sup A+\sup B-\varepsilon>\sup (A+B)
$$

which contradicts the definition of $\sup (A+B)$. We therefore conclude that we must have the equality $\sup (A+B)=\sup A+\sup B$.
b) For any $a \in A$ and $b \in B, a \leq \sup A$ and $b \leq \sup B$ and so for each element $c \in A \cdot B, c \leq(\sup A) \cdot(\sup B)$ which implies that

$$
\sup (A \cdot B) \leq(\sup A) \cdot(\sup B) .
$$

Next suppose towards a contradiction that $\sup (A \cdot B)<(\sup A) \cdot(\sup B)$ and let $\varepsilon=(\sup A) \cdot(\sup B)-\sup (A \cdot B)$.
By the definitions of $\sup A$ and $\sup B$ we can find $a \in A$ and $b \in B$ such that

$$
\begin{aligned}
& a>\sup A-\frac{\varepsilon}{2 \sup B}, \\
& b>\sup B-\frac{\varepsilon}{2 \sup A} .
\end{aligned}
$$

Therefore, using the definition of ε,

$$
\begin{aligned}
a \cdot b & >\left(\sup A-\frac{\varepsilon}{2 \sup B}\right) \cdot\left(\sup B-\frac{\varepsilon}{2 \sup A}\right) \\
& =(\sup A) \cdot(\sup B)-\varepsilon+\frac{\varepsilon^{2}}{4(\sup A) \cdot(\sup B)} \\
& >(\sup A) \cdot(\sup B)-\varepsilon \\
& =\sup (A \cdot B)
\end{aligned}
$$

which contradicts the definition of $\sup (A \cdot B)$. We therefore conclude that we must have the equality $\sup (A \cdot B)=(\sup A) \cdot(\sup B)$.

3 We first note that the point $z=\frac{-1}{2}+\frac{\sqrt{3}}{2} i$ is in the second quadrant. By reflecting along the imaginary axis and computing the argument of the corresponding point in the first quadrant, we find that

$$
\arg (z)=\pi-\arg \left(\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)=\pi-\arctan \left(\frac{\sqrt{3}}{1}\right)=\pi-\frac{\pi}{3}=\frac{2 \pi}{3} .
$$

Krantz 1.2: 3 We wish to find the all cube roots of $1+i$. We can write

$$
z^{3}=1+i=r e^{i \theta}=\sqrt{2} e^{i \pi / 4}
$$

in polar form. Then solutions $z=s e^{i \psi}$ must satisfy $s^{3}=r$ and $3 \psi=2 \pi \cdot n+\theta$. This yields

$$
z_{1}=2^{1 / 6} e^{i \frac{\pi}{12}}, \quad z_{2}=2^{1 / 6} e^{i \frac{3 \pi}{4}}, \quad z_{3}=2^{1 / 6} e^{i \frac{17 \pi}{4}} .
$$

Krantz 1.2: 7 Let p be a polynomial with real coefficients, i.e.,

$$
p(z)=a_{0}+a_{1} z+\cdots+a_{n} z^{n}, \quad a_{m} \in \mathbb{R}, \quad m=0,1, \ldots, n .
$$

Then if $p(z)=0$,

$$
p(\bar{z})=a_{0}+a_{1} \bar{z}+\cdots+\bar{z}^{n}=\overline{a_{0}+a_{1} z+\cdots+a_{n} z^{n}}=\overline{p(z)}=\overline{0}=0
$$

since $(\bar{z})^{n}=\overline{\left(z^{n}\right)}$.

Krantz 1.2: 11 We want a picture of

$$
S=\{z \in \mathbb{C}:|z-1|+|z+1|=2\} .
$$

If we write $z=x+i y$, we see that if $y \neq 0$,

$$
|z-1|+|z+1|=\sqrt{(x-1)^{2}+y^{2}}+\sqrt{(x+1)^{2}+y^{2}}>|x-1|+|x+1| \geq 2
$$

where we in the last step used the triangle inequality as

$$
2=|2-x+x|=|1-x+(1+x)| \leq|x-1|+|x+1| .
$$

We therefore conclude that $y=0$ for all z in S. Now if $|x|>1$, then

$$
2<|2 x|=|x+1+x-1| \leq|x+1|+|x-1|=2
$$

a contradiction! Meanwhile if $0 \leq|x| \leq 1$, then

$$
|x-1|=1-x \Longrightarrow|x+1|+|x-1|=x+1+(1-x)=2
$$

and so

$$
S=\{x+i y \in \mathbb{C}:|x| \leq 1, y=0\}
$$

which we draw as

Krantz 1.2: 14 We wish to find the complex numbers z such that

$$
z^{2}=-1-i=\sqrt{2} e^{i 5 \pi / 4} .
$$

The solutions $z=s e^{i \psi}$ must satisfy $s^{2}=\sqrt{2}$ and $2 \psi=5 \pi / 4+2 \pi \cdot n$. This yields

$$
z_{1}=2^{1 / 4} e^{i \frac{5 \pi}{8}}, \quad z_{2}=2^{1 / 4} e^{i \frac{13 \pi}{8}}
$$

Krantz 1.2: 18 We want to draw a picture of

$$
T=\{z \in \mathbb{C}:|z+\bar{z}|-|z-\bar{z}|=2\} .
$$

If we write $z=x+i y$, we see that

$$
z+\bar{z}=x+i y+(x-i y)=2 x, \quad z-\bar{z}=x+i y-(x-i y)=2 i y .
$$

Hence,

$$
T=\{x+i y \in \mathbb{C}: 2|x|-2|y|=2\}=\{x+i y \in \mathbb{C}:|x|-|y|=1\}
$$

which looks like

