Norges teknisk-naturvitenskapelige universitet Department of Mathematical Sciences MA1102 Grunnkurs i analyse II Vår 2023

Øving 7

1 a) Let $f(x) = \cos(x)$, compute $f^{-1}((0,1))$. Is this set open?

b) Let f be defined as

$$f(x) = \begin{cases} \sin(x) & x < 0, \\ e^{-x} + 1 & x \ge 0. \end{cases}$$

Prove that this function is discontinuous by finding an open set U such that $f^{-1}(U)$ is not open.

- c) For $f(x) = e^{-x^2}$, compute $f^{-1}([1,2])$.
- 2 The function $f : \mathbb{R} \setminus \{0\} \to [0,1], x \mapsto \sin(\frac{1}{x})$ is clearly continuous for $x \neq 0$ as it is the composition of two continuous functions. Prove that not f cannot be extended to a continuous function on all of \mathbb{R} by showing that the limit

$$\lim_{x \to 0} f(x)$$

does not exist.

- **3** a) Give an example of a continuous function f and an open set U so that f(U) is not open.
 - b) Give an example of a discontinuous function f and a closed set E so that $f^{-1}(E)$ is open.
- 4 If f is continuous on [0,1] and if f(x) is positive for each rational x, then does it follow that f is positive for all x?

5 This exercise deals with fixed points of functions, i.e., points x such that f(x) = x.

- a) Prove that any continuous function $f: [0,1] \to [0,1]$ has a fixed point. Hint: Intermediate value theorem.
- **b)** Is the same result true for $f: (0,1) \to (0,1)$? Give a proof or counterexample.
- c) Give an example of a discontinuous function $f:[0,1] \to [0,1]$ that has no fixed point. A drawing will suffice.