1 a) Let $f(x)=\cos (x)$, compute $f^{-1}((0,1))$. Is this set open?
b) Let f be defined as

$$
f(x)= \begin{cases}\sin (x) & x<0, \\ e^{-x}+1 & x \geq 0\end{cases}
$$

Prove that this function is discontinuous by finding an open set U such that $f^{-1}(U)$ is not open.
c) For $f(x)=e^{-x^{2}}$, compute $f^{-1}([1,2])$.

2 The function $f: \mathbb{R} \backslash\{0\} \rightarrow[0,1], x \mapsto \sin \left(\frac{1}{x}\right)$ is clearly continuous for $x \neq 0$ as it is the composition of two continuous functions. Prove that not f cannot be extended to a continuous function on all of \mathbb{R} by showing that the limit

$$
\lim _{x \rightarrow 0} f(x)
$$

does not exist.

3 a) Give an example of a continuous function f and an open set U so that $f(U)$ is not open.
b) Give an example of a discontinuous function f and a closed set E so that $f^{-1}(E)$ is open.

44 If f is continuous on $[0,1]$ and if $f(x)$ is positive for each rational x, then does it follow that f is positive for all x ?

5 This exercise deals with fixed points of functions, i.e., points x such that $f(x)=x$.
a) Prove that any continuous function $f:[0,1] \rightarrow[0,1]$ has a fixed point. Hint: Intermediate value theorem.
b) Is the same result true for $f:(0,1) \rightarrow(0,1)$? Give a proof or counterexample.
c) Give an example of a discontinuous function $f:[0,1] \rightarrow[0,1]$ that has no fixed point. A drawing will suffice.

