Norges teknisk-naturvitenskapelige universitet
Department of Mathematical
Sciences

1 In this exercise we will prove the Picard-Lindelöf theorem which gives conditions under which the ODE

$$
x^{\prime}(t)=f(t, x), \quad x\left(t_{0}\right)=x_{0}
$$

has a solution in a neighborhood of t_{0}.
Specifically, assume that f is continuous on

$$
R=\left\{(t, x):\left|t-t_{0}\right|<a,\left|x-x_{0}\right|<b\right\}
$$

and bounded by $c \in \mathbb{R}$. Moreover, we assume that f is Lipschitz in its second argument which means that there exists a positive constant k such that

$$
|f(t, x)-f(t, y)| \leq k|x-y|
$$

for all (t, x) and (t, y) in R.
a) Show that in order to show that the ODE has a solution, it suffices to show that there exists a function $x \in C^{1}\left[t_{0}-a, t_{0}+a\right]$ such that

$$
x(t)=x_{0}+\int_{t_{0}}^{t} f(s, x(s)) d s
$$

Hint: Differentiate; $x \in C^{1}$ means that x is continuously differentiable.
b) With the interval $J=\left[t_{0}-\beta, t_{0}+\beta\right]$ we can define the closed space

$$
X=\left\{y \in C(J): y\left(t_{0}\right)=x_{0}, \sup _{t \in J}\left|x_{0}-y(t)\right| \leq c \beta\right\}
$$

(we assume β is so small that $c \beta<b$). Show that the operator T defined by

$$
T(y)(t)=x_{0}+\int_{t_{0}}^{t} f(s, y(s)) d s, \quad t \in J
$$

maps X to X, i.e., $T(y) \in X$ for $y \in X$.
c) Show that for $y_{1}, y_{2} \in X$,

$$
d_{\infty}\left(T\left(y_{1}\right), T\left(y_{2}\right)\right) \leq k \beta d_{\infty}\left(y_{1}, y_{2}\right)
$$

d) Find a condition on β so that we can use Banach's fixed point theorem to conclude that there exists a unique $x \in C(J)$ such that

$$
T(x)=x
$$

e) Combine the above results to conclude that

$$
x^{\prime}(t)=f(t, x), \quad x\left(t_{0}\right)=x_{0}
$$

has a unique solution on $C^{1}(J)$.

2 Verify that the ODE

$$
x^{\prime}(t)=-t x(t), \quad x(0)=1
$$

satisfies the conditions of the Picard-Lindelöf theorem and compute the next 3 Picard iterations $\left(x_{1}, x_{2}, x_{3}\right)$. Start with $x_{0}(t)=1$ to match the initial condition.

Can you recognize which Taylor series this approaches? If not that is okay!
Hint: $2 \cdot 4 \cdot 6 \cdots 2 n=2^{n} \cdot n!$.

3 Let $y(x)$ be the solution of the ODE

$$
y^{\prime}=x+y, \quad y(0)=1
$$

Use the improved Euler method with step size $h=0.1$ to approximate the values $y(0.1)$ and $y(0.2)$.

Reminder: Recall that the improved Euler method can be written as

$$
y_{n+1}=y_{n}+\frac{h}{2}\left[f\left(x_{n}, y_{n}\right)+f\left(x_{n+1}, y_{n}+h f\left(x_{n}, y_{n}\right)\right)\right]
$$

4 a) We are given that $y_{1}(x)=\sin (2 x)$ and $y_{2}(x)=\cos (2 x)$ are solutions to the homogenous differential equation

$$
y^{\prime \prime}=-4 y
$$

Find the unique solution that satisfies the initial conditions $y(0)=2, y^{\prime}(\pi)=1$.
b) We are given that $y_{1}(x)=e^{-\frac{1}{2} x}$ and $y_{2}(x)=x e^{-\frac{1}{2} x}$ are solutions to the homogenous differential equation

$$
4 y^{\prime \prime}+4 y^{\prime}+y=0
$$

Find the unique solution that satisfies the initial conditions $y(2)=0, y^{\prime}(2)=2$.

5 When solving inhomogenous differential equations of the form

$$
a(x) y^{\prime \prime}(x)+b(x) y^{\prime}(x)+c(x) y(x)=f(x)
$$

the most efficient approach may be to guess a solution. In the exercises below, you are given good guesses which share similarities with the function $f(x)$ - this is in general a good approach.
a) For which values of the constants A, B, C is the function $y(x)=A x^{2}+B x^{2}+C$ a solution to the differential equation.

$$
y^{\prime \prime}+3 y^{\prime}-y=4 x
$$

b) For which values of the constants A, B is the function $y(x)=A \sin (2 x)+$ $B \cos (2 x)$ a solution to the differential equation.

$$
y^{\prime \prime}+2 y^{\prime}-2 y=\sin (2 x)
$$

c) For which values of the constants A, B is the function $y(x)=A e^{x}+B x e^{x}$ a solution to the differential equation.

$$
y^{\prime \prime}+8 y^{\prime}-6 y=x e^{x}
$$

