Norges teknisk-naturvitenskapelige universitet

Øving 10
Department of Mathematical
Sciences

1 a) Compute the antiderivative

$$
\int \frac{1}{1+x^{2}} d x
$$

Hint: Substitute $x=\tan (\theta)$
b) Write $\frac{1}{1+x^{2}}$ as a power series. Where does it converge?
c) Use Abel's theorem to compute the sum

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} .
$$

2 Recall that the Taylor series of a function f around a point a is given by

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n} .
$$

a) Compute the Taylor coefficients of $\sin (x)$ and $\cos (x)$ around $x=0$ and write up the Taylor series. For which x do the Taylor series converge?
b) Prove that the Taylor series converge uniformly to the trigonometric functions on compact subsets of \mathbb{R}. Why does this imply pointwise equality on all of \mathbb{R} ?

3 For $f(x)=\arctan (x)$, compute

$$
f^{(11)}(0) .
$$

Hint: Exercise 1.

4 Compute the power series for

$$
f(x)=\int_{0}^{x} \ln \left(\left(28-t^{3}\right)^{2}\right) d t
$$

and compute the radius of convergence.

