

MA1102

Grunnkurs i analyse II

Vår 2023

Norges teknisk–naturvitenskapelige universitet Department of Mathematical Sciences

Øving 1

- 1 Prove that the least upper bound and greatest lower bound for a set of real numbers is unique.
- 2 Prove the following properties of the supremum.
 - a) If A and B are subsets of the reals and $A + B = \{a + b : a \in A, b \in B\}$, then

$$\sup A + \sup B = \sup(A + B).$$

b) If A, B are bounded subsets of the positive real line and $A \cdot B = \{a \cdot b : a \in A, b \in B\}$, then

$$(\sup A) \cdot (\sup B) = \sup (A \cdot B).$$

Hint: A version of $(x - \frac{\varepsilon}{2y})(y - \frac{\varepsilon}{2x}) > xy - \varepsilon$ can be useful.

3 Find the argument of $z = \frac{-1}{2} + \frac{\sqrt{3}}{2}i$.

Exercises 3, 7, 11, 14, 18 from the following exercises in Krantz: (see next page)

- **3.** Find all cube roots of the complex number 1 + i.
- 4. Taking the commutative, associative, and distributive laws of addition and multiplication for the real number system for granted, establish these laws for the complex numbers.

CHAPTER 1. NUMBER SYSTEMS

- 18
 - Consider the function φ : R → C given by φ(x) = x + i · 0. Prove that φ respects addition and multiplication in the sense that φ(x + x') = φ(x) + φ(x') and φ(x · x') = φ(x) · φ(x').
 - 6. Prove that the field of complex numbers cannot be made into an ordered field. (Hint: Since i ≠ 0 then either i > 0 or i < 0. Both lead to a contradiction.)</p>
 - Prove that the complex roots of a polynomial with real coefficients occur in complex conjugate pairs.
 - 8. Calculate the square roots of i.
 - 9. Prove that the set of all complex numbers is uncountable.
- 10. Prove that any nonzero complex number z has kth roots r₁, r₂, ..., r_k. That is, prove that there are k of them.
- In the complex plane, draw a picture of

$$S = \{ z \in \mathbb{C} : |z - 1| + |z + 1| = 2 \}.$$

- 12. Refer to Exercise 9. Show that the kth roots of z all lie on a circle centered at the origin, and that they are equally spaced.
- 13. Find all the cube roots of 1 + i.
- **14.** Find all the square roots of -1 i.
- 15. Prove that the set of all complex numbers with rational real part is uncountable.
- 16. Prove that the set of all complex numbers with both real and imaginary parts rational is countable.
- 17. Prove that the set $\{z \in \mathbb{C} : |z| = 1\}$ is uncountable.
- 18. In the complex plane, draw a picture of

$$T = \{ z \in \mathbb{C} : |z + \overline{z}| - |z - \overline{z}| = 2 \}.$$