Introduction to conic sections

Author: Eduard Ortega

1 Introduction

A conic is a two-dimensional figure created by the intersection of a plane and a right circular cone. All conics can be written in terms of the following equation:

$$Ax^{2} + Bxy + Cy^{2} + Dx + Ey + F = 0.$$

The four conics we'll explore in this text are parabolas, ellipses, circles, and hyperbolas. The equations for each of these conics can be written in a standard form, from which a lot about the given conic can be told without having to graph it. We'll study the standard forms and graphs of these four conics,

1.1 General definition

A conic is the intersection of a plane and a right circular cone. The four basic types of conics are parabolas, ellipses, circles, and hyperbolas. Study the figures below to see how a conic is geometrically defined.

In a *non-degenerate conic* the plane does not pass through the vertex of the cone. When the plane does intersect the vertex of the cone, the resulting conic is called a *degenerate conic*. Degenerate conics include a point, a line, and two intersecting lines.

The equation of every conic can be written in the following form:

$$Ax^{2} + Bxy + Cy^{2} + Dx + Ey + F = 0.$$

This is the algebraic definition of a conic. Conics can be classified according to the coefficients of this equation.

The discriminant of the equation is $B^2 - 4AC$. Assuming a conic is not degenerate, the following conditions hold true:

- 1. If $B^2 4AC < 0$, the conic is a *circle* (if B = 0 and A = B), or an *ellipse*.
- 2. If $B^2 4AC = 0$, the conic is a parabola.
- 3. If $B^2 4AC > 0$, the conic is a hyperbola.

Although there are many equations that describe a conic section, the following table gives the *standard form* equations for non-degenerate conics sections.

Standard equation for non-degenerate conic section	
circle	$x^2 + y^2 = a^2$
ellipse	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
parabola	$y^2 - 4ax = 0$
hyperbola	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

1.2 problems

- 1. Is the following conic a parabola, an ellipse, a circle, or a hyperbola: $-3x^2+y+2 = 0$? It is a parabola.
- 2. Is the following conic a parabola, an ellipse, a circle, or a hyperbola: $2x^2 + 3xy 4y^2 + 2x 3y + 1 = 0$? It is a hyperbola.
- 3. Is the following conic a parabola, an ellipse, a circle, or a hyperbola: $2x^2 3y^2 = 0$? It is a hyperbola.
- 4. Is the following conic a parabola, an ellipse, a circle, or a hyperbola: $-3x^2 + xy 2y^2 + 4 = 0$? It is an ellipse.
- 5. Is the following conic a parabola, an ellipse, a circle, or a hyperbola: $x^2 = 0$? It is a degenerate conic. x = 0 is a line.
- 6. Is the following conic a parabola, an ellipse, a circle, or a hyperbola: $x^2 y^2 = 0$? It is a degenerate conic. $x^2 - y^2 = (x - y)(x + y) = 0$ are two lines that intersects.
- 7. Is the following conic a parabola, an ellipse, a circle, or a hyperbola: $x^2 + y^2 = 0$? It is a degenerate conic. The only point that satisfies the equations $x^2 + y^2 = 0$ is (0,0).

1.3 Geometric definition

Let ε be a positive number, *eccentricity*, ℓ a line, *directice* and a point \mathcal{B} , *focus*. The triple $(\varepsilon, \ell, \mathcal{B})$ defines a conic section in the following way:

A point \mathcal{P} is in the conic section defined by $(\varepsilon, \ell, \mathcal{B})$ if

$$|\mathcal{PB}| = \varepsilon \cdot |\mathcal{P}\ell|$$

 $|\mathcal{PB}|$ stands for the distance from the point \mathcal{P} to the point \mathcal{B} and $|\mathcal{P}\ell|$ for the minimal distance of the point \mathcal{P} to the line ℓ .

If the focus \mathcal{B} does not belong to the directrice line ℓ , the following conditions hold true:

- 1. If $0 < \varepsilon < 1$ then conic is an ellipse.
- 2. If $\varepsilon = 1$ then conic is an parabola.
- 3. If $\varepsilon > 1$ then conic is an hyperbola,

If the focus \mathcal{B} does belong to the directrice line ℓ , the following conditions hold true:

- 1. If $0 < \varepsilon < 1$ then conic is a point.
- 2. If $\varepsilon = 1$ then conic is a line.
- 3. If $\varepsilon > 1$ then conic are two lines that cross.

2 Non-degenerate conic sections

Given an eccentricity ε , a directrice line ℓ and a focus point \mathcal{B} not contain in ℓ , we can define a non-degenerate conic section. For simplicity we will assume that ℓ is of the form x = L and $\mathcal{B} = (B, 0)$, with L < B. We will see later that through translations and rotations we always can reduce to this situation.

In this case given a point $\mathcal{P} = (x, y)$ we have that

$$|\mathcal{PB}| = \sqrt{(x-B)^2 + y^2}$$
 and $|\mathcal{P}\ell| = \sqrt{(x-L)^2}$

Then the relation $|\mathcal{PB}| = \varepsilon \cdot |\mathcal{P}\ell|$ can we written in the following way:

$$\sqrt{(x-B)^2 + y^2} = \varepsilon \sqrt{(x-L)^2}.$$

Then we have

$$(\sqrt{(x-B)^2 + y^2})^2 = (\varepsilon\sqrt{(x-L)^2})^2$$

that is equivalent to

$$(x-B)^2 + y^2 = \varepsilon^2 (x-L)^2$$
.

So this is the general equation of a conic section. Now we will study which type of conic section is depending of the possible values of the eccentricity ε .

2.1 Ellipse

We suppose that $0 < \varepsilon < 1$. First we compute the intersection of the conic section with the x-axis. To do that we have to replace y = 0 in the general equation of the conic section, so it follows the equation

$$(x-B)^2 = \varepsilon^2 (x-L)^2 \,.$$

This is equivalent to the equation

$$\sqrt{(x-B)^2} = \pm \sqrt{\varepsilon^2 (x-L)^2} \,,$$

so we have

$$(x-B) = \pm \varepsilon (x-L) \,,$$

Here we encounter to possibilities: First suppose the equation

$$(x-B) = -\varepsilon(x-L)\,,$$

that is equivalent to

$$(1+\varepsilon)x = B + \varepsilon L\,,$$

so the first point that intersects the x-axis is

$$x_1 = x = \frac{B + \varepsilon L}{1 + \varepsilon} \,.$$

Finally suppose the equation

$$(x-B) = +\varepsilon(x-L)\,,$$

that is equivalent to

$$(1-\varepsilon)x = B - \varepsilon L\,,$$

so the second point that intersects the x-axis is

$$x_2 = x = \frac{B - \varepsilon L}{1 - \varepsilon} \,.$$

A simple calculation yields that $x_1 < x_2$.

definitions	
center	$\bar{x} = \frac{x_1 + x_2}{2}$
major axis	$a = \frac{x_2 - x_1}{2}$
minor axis	$b = a\sqrt{1-\varepsilon^2}$

With this definitions on hand we can rewrite the general equation in the following way

$$\frac{(x-\bar{x})^2}{a^2} + \frac{y^2}{b^2} = 1 \,,$$

that we call the standard equation of the ellipse. Conversely,

$\frac{(x-\bar{x})^2}{a^2} + \frac{y^2}{b^2} = 1$	
eccentricity	$\varepsilon = \sqrt{1 - \frac{b^2}{a^2}}$
directrice	$L = \bar{x} - \frac{a}{\varepsilon}$
focus	$B = \bar{x} - \varepsilon \cdot a$

From the standard equation of the ellipse one can observe that the ellipse is symmetric with respect to the vertical line $x = \bar{x}$. Therefore if we define

$$B_2 = \bar{x} + \frac{a}{\varepsilon}$$
 and $L_2 = \bar{x} + \frac{a}{\varepsilon}$

we have that the triple given by eccentricity ε , focus point $\mathcal{B}_2 = (B_2, 0)$ and the directrice line ℓ_2 given by $x = L_2$, determines the same conic section as $(\varepsilon, \mathcal{B}, \ell)$. Thus, $\mathcal{B}_1 = \mathcal{B}$ and \mathcal{B}_2 are called the two focus points of the ellipse.

Now given the two focus of the ellipse \mathcal{B}_1 and \mathcal{B}_2 we can give an alternative geometric description, in the following way: An ellipse is the set of points such that the sum of the distances from any point on the ellipse to \mathcal{B}_1 and \mathcal{B}_2 is constant and equal to 2a, that is

2.1.1 Examples

1. Find the equation of the ellipse with eccentricity $\varepsilon = 1/3$, directrice line x = -1and focus $\mathcal{B} = (1, 0)$. Then according the formulas we have

$$x_1 = \frac{1+1/3(-1)}{1+1/3} = \frac{2/3}{4/3} = 1/2$$
 $x_2 = \frac{1-1/3(-1)}{1-1/3} = \frac{4/3}{2/3} = 2$

and hence the center of the ellipse is

$$\bar{x} = \frac{1/2 + 2}{2} = 5/4,$$

and

$$a = \frac{2 - 1/2}{2} = 3/4$$
 $b = 3/4 \cdot \sqrt{1 - (1/3)^2} = 3/4 \cdot \sqrt{8/9} = \frac{\sqrt{2}}{2}.$

Therefore the equation is

$$\frac{(x-5/4)^2}{(3/4)^2} + \frac{y^2}{(\frac{\sqrt{2}}{2})^2} = 1\,,$$

 \mathbf{SO}

$$\frac{16(x-5/4)^2}{9} + 2y^2 = 1$$

2. Let $\mathcal{B}_1 = (-1, 0)$ and $\mathcal{B}_2 = (3, 0)$ be two points in the plane. We want to give the equation of the ellipse such points \mathcal{P} satisfy

$$|\mathcal{PB}_1| + |\mathcal{PB}_2| = 6.$$

First observe that the formulas say that 2a = 6, and hence a = 3. The center of the ellipse is the mid-point between \mathcal{B}_1 and \mathcal{B}_2 that is $\bar{x} = 2$. We need now to calculate the eccentricity, that from the above formulas comes from the relation

$$|\mathcal{B}_1\mathcal{B}_2| = 2a\varepsilon\,,$$

so we have that $4 = 2 \cdot 3 \cdot \varepsilon$, and follows that $\varepsilon = 2/3$. Finally, we have that $b = a\sqrt{1-\varepsilon^2}$, so $b = 3\sqrt{5/9} = \sqrt{5}$. Therefore the equation of the ellipse is

$$\boxed{\frac{(x-2)^2}{9} + \frac{y^2}{5} = 1}$$

2.2 Parabel

We suppose that $\varepsilon = 1$, that translates as the condition

$$\left|\mathcal{PB}\right| = \varepsilon \cdot \left|\mathcal{P\ell}\right|,$$

that are the points \mathcal{P} in the plane that are at the same distance from the focus \mathcal{B} as from the directrice ℓ .

Then the general equation of the conic section reduces to

$$(x-B)^2 + y^2 = (x-L)^2$$
,

and we can write it as

$$y^{2} = (x - L)^{2} - (x - B)^{2} = x^{2} - 2xL + L^{2} - x^{2} + 2xB - B^{2} = 2(B - L)x + (L^{2} - B^{2}),$$

that is

$$y^2 = 2(B - L)x + (L^2 - B^2)$$

If we want to find the intersection of the conic section with the x-axis, we have to replace y = 0 in the above equation. So we have

$$0 = 2(B - L)x + (L^2 - B^2)$$

that is

$$2(L - B)x = (L^2 - B^2) = (L - B)(L + B)$$

so after cancel out some the (L - B) term we have that

$$x_1 = x = \frac{L+B}{2}$$

that we can the vertex of the parabola.

2.3 Hyperbola

We suppose that $\varepsilon > 1$. First we compute the intersection of the conic section with the x-axis. To do that we have to replace y = 0 in the general equation of the conic section, so it follows the equation

$$(x-B)^2 = \varepsilon^2 (x-L)^2 \,.$$

This is equivalent to the equation

$$\sqrt{(x-B)^2} = \pm \sqrt{\varepsilon^2 (x-L)^2},$$

so we have

$$(x-B) = \pm \varepsilon (x-L) \,,$$

Here we encounter to possibilities: First suppose the equation

$$(x-B) = -\varepsilon(x-L)\,,$$

that is equivalent to

$$(1+\varepsilon)x = B + \varepsilon L\,,$$

so the first point that intersects the x-axis is

$$x_1 = x = \frac{B + \varepsilon L}{1 + \varepsilon} \,.$$

Finally suppose the equation

$$(x-B) = +\varepsilon(x-L),$$

that is equivalent to

$$(1-\varepsilon)x = B - \varepsilon L\,,$$

so the second point that intersects the x-axis is

$$x_2 = x = \frac{B - \varepsilon L}{1 - \varepsilon} \,.$$

A simple calculation yields that $x_1 > x_2$. Observe that this is the opposite that happens in the ellipse situation.

definitions	
center	$\bar{x} = \frac{x_1 + x_2}{2}$
major axis	$a = \frac{x_1 - x_2}{2}$
minor axis	$b = a\sqrt{\varepsilon^2 - 1}$

With this definitions on hand we can rewrite the general equation in the following way

$\boxed{\frac{(x-\bar{x})^2}{a^2}}$	$-\tfrac{y^2}{b^2} = 1,$	
-------------------------------------	--------------------------	--

that we call the standard equation of the hyperbola.

Conversely,

$\frac{(x-\bar{x})^2}{a^2} \cdot$	$-\frac{y^2}{b^2} = 1$
eccentricity	$\varepsilon = \sqrt{1 + \frac{b^2}{a^2}}$
directrice	$L = \bar{x} + \frac{a}{\varepsilon}$
focus	$B = \bar{x} + \varepsilon \cdot a$

From the standard equation of the hyperbola one can observe that the hyperbola is symmetric with respect to the vertical line $x = \bar{x}$. Therefore if we define

$$B_2 = \bar{x} - \varepsilon \cdot a$$
 and $L_2 = \bar{x} - \frac{a}{\varepsilon}$

we have that the triple given by eccentricity ε , focus point $\mathcal{B}_2 = (B_2, 0)$ and the directrice line ℓ_2 given by $x = L_2$, determines the same conic section as $(\varepsilon, \mathcal{B}, \ell)$. Thus, $\mathcal{B}_1 = \mathcal{B}$ and \mathcal{B}_2 are called the two focus points of the hyperbola.

Now given the two focus of the hyperbola \mathcal{B}_1 and \mathcal{B}_2 we can give an alternative geometric description, in the following way: An hyperbola is the set of points such that the difference of the distances from any point on the ellipse to \mathcal{B}_1 and \mathcal{B}_2 is constant and equal to 2a, that is

2.3.1 Examples

1. Find the equation of the hyperbola with eccentricity $\varepsilon = 2$, directrice line x = -1and focus $\mathcal{B} = (1, 0)$. Then according the formulas we have

$$x_1 = \frac{1+2(-1)}{1+2} = -\frac{1}{3}$$
 $x_2 = \frac{1-2(-1)}{1-2} = \frac{3}{-1} = -3$

and hence the center of the hyperbola is

$$\bar{x} = \frac{-1/3 - 3}{2} = -5/3$$

and

$$a = \frac{-1/3 - (-3)}{2} = 4/3$$
 $b = 4/3 \cdot \sqrt{2^2 - 1} = 4/3 \cdot \sqrt{3} = \frac{4}{\sqrt{3}}$.

Therefore the equation is

$$\frac{(x+5/3)^2}{(4/3)^2} - \frac{y^2}{(\frac{4}{\sqrt{3}})^2} = 1,$$

 \mathbf{SO}

$$\boxed{\frac{9(x+5/3)^2}{16} - \frac{3y^2}{16} = 1}$$

2. Let $\mathcal{B}_1 = (-1, 0)$ and $\mathcal{B}_2 = (3, 0)$ be two points in the plane. We want to give the equation of the hyperbola such points \mathcal{P} satisfy

First observe that the formulas say that 2a = 6, and hence a = 3. The center of the ellipse is the mid-point between \mathcal{B}_1 and \mathcal{B}_2 that is $\bar{x} = 2$. We need now to calculate the eccentricity, that from the above formulas comes from the relation

$$|\mathcal{B}_1\mathcal{B}_2| = \frac{2a}{\varepsilon}\,,$$

so we have that $4 = \frac{2\cdot 3}{\varepsilon}$, and follows that $\varepsilon = 3/2$. Finally, we have that $b = a\sqrt{\varepsilon^2 - 1}$, so $b = 3\sqrt{5/4} = \frac{3\sqrt{5}}{2}$. Therefore the equation of the hyperbola is

$$\frac{(x-2)^2}{9} - \frac{4y^2}{45} = 1$$

3 Change of coordinates

In the above section we have supposed that the directrice line is parallel to the y-axis, i.e., x = L and the focus is over the x-axis, i.e. $\mathcal{B} = (B, 0)$, but what happens with the general situation where we have any given line and point? Change of coordinates!

3.1 translation

A translation to a point (a, b) is a change of coordinates (x, y) to a new coordinates (\bar{x}, \bar{y}) in such a way

 $\bar{x} = x - a$ and $\bar{y} = y - b$.

Roughly speaking, a translation moves the origin to the point (a, b).

We can reverse the change of coordinates from the new coordinates (\bar{x}, \bar{y}) to the old ones:

 $x = \bar{x} + a$ and $y = \bar{y} + b$.

3.1.1 Examples

1. We consider the translation to the point (1, 2). Then:

(x, y)-coordinates	(\bar{x}, \bar{y}) -coordinates
(0,0)	(-1, -2)
(1,2)	(0,0)
y = x	$\bar{y} + 2 = \bar{x} + 1$
	$\bar{y} = \bar{x} - 1$
$x^2 + y^2 = 1$	$(\bar{x}+1)^2 + (\bar{y}+2)^2 = 1$

2. We want to find the equation of the ellipse that has eccentricity $\varepsilon = 1/2$, directrice line x = 1 and focus (3, 2).

Observe that if we make a translation to the point (2,2) we have the following

(x, y)-coordinates	(\bar{x}, \bar{y}) -coordinates
(3,2)	(1,0)
x = 1	$\bar{x} + 2 = 1$
	$\bar{x} = -1$

So now we can construct the ellipse with eccentricity $\varepsilon = 1/2$, directrice line $\bar{x} = -1 = L$ and focus (1,0), so B = 1. According the formulas we have that

$$x_1 = \frac{1 + 1/2 \cdot (-1)}{1 + 1/2} = \frac{1/2}{3/2} = 1/3$$

and

$$x_2 = \frac{1 - 1/2 \cdot (-1)}{1 - 1/2} = \frac{3/2}{1/2} = 3.$$

thus

$$\bar{x} = \frac{1/3 + 3}{2} = \frac{10/3}{2} = 5/3$$

 $a = \frac{3 - 1/3}{2} = \frac{8/3}{2} = 4/3$

and

$$b = 4/3 \cdot \sqrt{1 - (1/2)^2} = 4/3 \cdot \sqrt{3/4} = \frac{2}{\sqrt{3}}$$

Therefore the equation of the ellipse in the (\bar{x}, \bar{y}) coordinates is

$$\frac{(\bar{x} - 5/3)^2}{(4/3)^2} + \frac{\bar{y}^2}{(\frac{2}{\sqrt{3}})^2} = 1$$

that we can rewrite as

Finally we return to the old coordinates (x, y), using that

 $\bar{x} = x - 2$ and $\bar{y} = y - 2$.

So replacing this to the equation we have

$$\frac{((x-2)-5/3)^2}{16/9} + \frac{(y-2)^2}{4/3} = 1.$$

that is

$$\frac{(x-11/3)^2}{16/9} + \frac{(y-2)^2}{4/3} = 1.$$

3.2 rotation

A rotation with angle θ is a change of coordinates (x, y) to a new coordinates (\bar{x}, \bar{y}) in such a way

 $\bar{x} = x\cos\theta + y\sin\theta$ and $\bar{y} = -x\sin\theta + y\cos\theta$.

We can reverse the change of coordinates from the new coordinates (\bar{x}, \bar{y}) to the old ones:

 $x = \bar{x}\cos\theta - \bar{y}\sin\theta$ and $y = \bar{x}\sin\theta + \bar{y}\cos\theta$.

3.2.1 Examples

1. We consider the a rotation of 45° . Then:

(x, y)-coordinates	(\bar{x}, \bar{y}) -coordinates
(0,0)	(0,0)
(1,1)	$(\sqrt{2}, 0)$
y = -x - 1	$\left(\frac{\sqrt{2}}{2}\bar{x} + \frac{\sqrt{2}}{2}\bar{y}\right) = -\left(\frac{\sqrt{2}}{2}\bar{x} - \frac{\sqrt{2}}{2}\bar{y}\right) - 1$
	$\bar{x} = -\frac{1}{\sqrt{2}}$

2. We want to find the equation of the parabola with directrice line y = -x - 1 and focus (1, 1).

Observe that if we make a translation of 45° in the new coordinates (\bar{x}, \bar{y}) the directrice line has equation $\bar{x} = -\frac{1}{\sqrt{2}}$ and the focus $(\sqrt{2}, 0)$. Then we can write the equation of the parabola

Finally, making the change of coordinate to the old coordinates (x, y), we have that

$$\left(-\frac{\sqrt{2}}{2}x + \frac{\sqrt{2}}{2}y\right)^2 = \frac{3}{\sqrt{2}}\left(\frac{\sqrt{2}}{2}x + \frac{\sqrt{2}}{2}y\right) - \frac{3}{2}$$

so it follows that

$$\frac{1}{2}x^2 + \frac{1}{2}y^2 - xy = \frac{3}{2}x + \frac{3}{2}y - \frac{3}{2}$$

and hence the final equation is

