Introduction to conic sections

Author:

Eduard Ortega

1 Introduction

A conic is a two-dimensional figure created by the intersection of a plane and a right circular cone. All conics can be written in terms of the following equation:

$$
A x^{2}+B x y+C y^{2}+D x+E y+F=0 .
$$

The four conics we'll explore in this text are parabolas, ellipses, circles, and hyperbolas. The equations for each of these conics can be written in a standard form, from which a lot about the given conic can be told without having to graph it. We'll study the standard forms and graphs of these four conics,

1.1 General definition

A conic is the intersection of a plane and a right circular cone. The four basic types of conics are parabolas, ellipses, circles, and hyperbolas. Study the figures below to see how a conic is geometrically defined.

In a non-degenerate conic the plane does not pass through the vertex of the cone. When the plane does intersect the vertex of the cone, the resulting conic is called a degenerate conic. Degenerate conics include a point, a line, and two intersecting lines.

The equation of every conic can be written in the following form:

$$
A x^{2}+B x y+C y^{2}+D x+E y+F=0
$$

This is the algebraic definition of a conic. Conics can be classified according to the coefficients of this equation.

The discriminant of the equation is $B^{2}-4 A C$. Assuming a conic is not degenerate, the following conditions hold true:

1. If $B^{2}-4 A C<0$, the conic is a circle (if $B=0$ and $A=B$), or an ellipse.
2. If $B^{2}-4 A C=0$, the conic is a parabola.
3. If $B^{2}-4 A C>0$, the conic is a hyperbola.

Although there are many equations that describe a conic section, the following table gives the standard form equations for non-degenerate conics sections.

Standard equation for non-degenerate conic section	
circle	$x^{2}+y^{2}=a^{2}$
ellipse	$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
parabola	$y^{2}-4 a x=0$
hyperbola	$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$

1.2 problems

1. Is the following conic a parabola, an ellipse, a circle, or a hyperbola: $-3 x^{2}+y+2=$ 0 ? It is a parabola.
2. Is the following conic a parabola, an ellipse, a circle, or a hyperbola: $2 x^{2}+3 x y-$ $4 y^{2}+2 x-3 y+1=0 ?$ It is a hyperbola.
3. Is the following conic a parabola, an ellipse, a circle, or a hyperbola: $2 x^{2}-3 y^{2}=0$? It is a hyperbola.
4. Is the following conic a parabola, an ellipse, a circle, or a hyperbola: $-3 x^{2}+x y-$ $2 y^{2}+4=0 ?$ It is an ellipse.
5. Is the following conic a parabola, an ellipse, a circle, or a hyperbola: $x^{2}=0$? It is a degenerate conic. $x=0$ is a line.
6. Is the following conic a parabola, an ellipse, a circle, or a hyperbola: $x^{2}-y^{2}=0$? It is a degenerate conic. $x^{2}-y^{2}=(x-y)(x+y)=0$ are two lines that intersects.
7. Is the following conic a parabola, an ellipse, a circle, or a hyperbola: $x^{2}+y^{2}=0$? It is a degenerate conic. The only point that satisfies the equations $x^{2}+y^{2}=0$ is $(0,0)$.

1.3 Geometric definition

Let ε be a positive number, eccentricity, ℓ a line, directice and a point \mathcal{B}, focus. The triple $(\varepsilon, \ell, \mathcal{B})$ defines a conic section in the following way:

A point \mathcal{P} is in the conic section defined by $(\varepsilon, \ell, \mathcal{B})$ if

$$
|\mathcal{P B}|=\varepsilon \cdot|\mathcal{P} \ell|
$$

$|\mathcal{P B}|$ stands for the distance from the point \mathcal{P} to the point \mathcal{B} and $|\mathcal{P} \ell|$ for the minimal distance of the point \mathcal{P} to the line ℓ.

If the focus \mathcal{B} does not belong to the directrice line ℓ, the following conditions hold true:

1. If $0<\varepsilon<1$ then conic is an ellipse.
2. If $\varepsilon=1$ then conic is an parabola.
3. If $\varepsilon>1$ then conic is an hyperbola,

If the focus \mathcal{B} does belong to the directrice line ℓ, the following conditions hold true:

1. If $0<\varepsilon<1$ then conic is a point.
2. If $\varepsilon=1$ then conic is a line.
3. If $\varepsilon>1$ then conic are two lines that cross.

2 Non-degenerate conic sections

Given an eccentricity ε, a directrice line ℓ and a focus point \mathcal{B} not contain in ℓ, we can define a non-degenerate conic section. For simplicity we will assume that ℓ is of the form $x=L$ and $\mathcal{B}=(B, 0)$, with $L<B$. We will see later that through translations and rotations we always can reduce to this situation.

In this case given a point $\mathcal{P}=(x, y)$ we have that

$$
|\mathcal{P B}|=\sqrt{(x-B)^{2}+y^{2}} \quad \text { and } \quad|\mathcal{P} \ell|=\sqrt{(x-L)^{2}} .
$$

Then the relation $|\mathcal{P} \mathcal{B}|=\varepsilon \cdot|\mathcal{P} \ell|$ can we written in the following way:

$$
\sqrt{(x-B)^{2}+y^{2}}=\varepsilon \sqrt{(x-L)^{2}}
$$

Then we have

$$
\left(\sqrt{(x-B)^{2}+y^{2}}\right)^{2}=\left(\varepsilon \sqrt{(x-L)^{2}}\right)^{2}
$$

that is equivalent to

$$
(x-B)^{2}+y^{2}=\varepsilon^{2}(x-L)^{2} .
$$

So this is the general equation of a conic section. Now we will study which type of conic section is depending of the possible values of the eccentricity ε.

2.1 Ellipse

We suppose that $0<\varepsilon<1$. First we compute the intersection of the conic section with the x-axis. To do that we have to replace $y=0$ in the general equation of the conic section, so it follows the equation

$$
(x-B)^{2}=\varepsilon^{2}(x-L)^{2} .
$$

This is equivalent to the equation

$$
\sqrt{(x-B)^{2}}= \pm \sqrt{\varepsilon^{2}(x-L)^{2}}
$$

so we have

$$
(x-B)= \pm \varepsilon(x-L),
$$

Here we encounter to possibilities: First suppose the equation

$$
(x-B)=-\varepsilon(x-L)
$$

that is equivalent to

$$
(1+\varepsilon) x=B+\varepsilon L,
$$

so the first point that intersects the x-axis is

$$
x_{1}=x=\frac{B+\varepsilon L}{1+\varepsilon} .
$$

Finally suppose the equation

$$
(x-B)=+\varepsilon(x-L),
$$

that is equivalent to

$$
(1-\varepsilon) x=B-\varepsilon L,
$$

so the second point that intersects the x-axis is

$$
x_{2}=x=\frac{B-\varepsilon L}{1-\varepsilon} .
$$

A simple calculation yields that $x_{1}<x_{2}$.

definitions	
center	$\bar{x}=\frac{x_{1}+x_{2}}{2}$
major axis	$a=\frac{x_{2}-x_{1}}{2}$
minor axis	$b=a \sqrt{1-\varepsilon^{2}}$

With this definitions on hand we can rewrite the general equation in the following way

$$
\frac{(x-\bar{x})^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1,
$$

that we call the standard equation of the ellipse.
Conversely,

$\frac{(x-\bar{x})^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$	
eccentricity	$\varepsilon=\sqrt{1-\frac{b^{2}}{a^{2}}}$
directrice	$L=\bar{x}-\frac{a}{\varepsilon}$
focus	$B=\bar{x}-\varepsilon \cdot a$

From the standard equation of the ellipse one can observe that the ellipse is symmetric with respect to the vertical line $x=\bar{x}$. Therefore if we define

$$
B_{2}=\bar{x}+\frac{a}{\varepsilon} \quad \text { and } \quad \mathrm{L}_{2}=\overline{\mathrm{x}}+\frac{\mathrm{a}}{\varepsilon}
$$

we have that the triple given by eccentricity ε, focus point $\mathcal{B}_{2}=\left(B_{2}, 0\right)$ and the directrice line ℓ_{2} given by $x=L_{2}$, determines the same conic section as $(\varepsilon, \mathcal{B}, \ell)$. Thus, $\mathcal{B}_{1}=\mathcal{B}$ and \mathcal{B}_{2} are called the two focus points of the ellipse.

Now given the two focus of the ellipse \mathcal{B}_{1} and \mathcal{B}_{2} we can give an alternative geometric description, in the following way: An ellipse is the set of points such that the sum of the distances from any point on the ellipse to \mathcal{B}_{1} and \mathcal{B}_{2} is constant and equal to $2 a$, that is

$$
\left|\mathcal{P} \mathcal{B}_{1}\right|+\left|\mathcal{P} \mathcal{B}_{2}\right|=2 a
$$

2.1.1 Examples

1. Find the equation of the ellipse with eccentricity $\varepsilon=1 / 3$, directrice line $x=-1$ and focus $\mathcal{B}=(1,0)$. Then according the formulas we have

$$
x_{1}=\frac{1+1 / 3(-1)}{1+1 / 3}=\frac{2 / 3}{4 / 3}=1 / 2 \quad x_{2}=\frac{1-1 / 3(-1)}{1-1 / 3}=\frac{4 / 3}{2 / 3}=2
$$

and hence the center of the ellipse is

$$
\bar{x}=\frac{1 / 2+2}{2}=5 / 4,
$$

and

$$
a=\frac{2-1 / 2}{2}=3 / 4 \quad b=3 / 4 \cdot \sqrt{1-(1 / 3)^{2}}=3 / 4 \cdot \sqrt{8 / 9}=\frac{\sqrt{2}}{2} .
$$

Therefore the equation is

$$
\frac{(x-5 / 4)^{2}}{(3 / 4)^{2}}+\frac{y^{2}}{\left(\frac{\sqrt{2}}{2}\right)^{2}}=1
$$

so

$$
\frac{16(x-5 / 4)^{2}}{9}+2 y^{2}=1
$$

2. Let $\mathcal{B}_{1}=(-1,0)$ and $\mathcal{B}_{2}=(3,0)$ be two points in the plane. We want to give the equation of the ellipse such points \mathcal{P} satisfy

$$
\left|\mathcal{P} \mathcal{B}_{1}\right|+\left|\mathcal{P} \mathcal{B}_{2}\right|=6 .
$$

First observe that the formulas say that $2 a=6$, and hence $a=3$. The center of the ellipse is the mid-point between \mathcal{B}_{1} and \mathcal{B}_{2} that is $\bar{x}=2$. We need now to calculate the eccentricity, that from the above formulas comes from the relation

$$
\left|\mathcal{B}_{1} \mathcal{B}_{2}\right|=2 a \varepsilon,
$$

so we have that $4=2 \cdot 3 \cdot \varepsilon$, and follows that $\varepsilon=2 / 3$. Finally, we have that $b=a \sqrt{1-\varepsilon^{2}}$, so $b=3 \sqrt{5 / 9}=\sqrt{5}$. Therefore the equation of the ellipse is

$$
\frac{(x-2)^{2}}{9}+\frac{y^{2}}{5}=1
$$

2.2 Parabel

We suppose that $\varepsilon=1$, that translates as the condition

$$
|\mathcal{P B}|=\varepsilon \cdot|\mathcal{P} \ell|,
$$

that are the points \mathcal{P} in the plane that are at the same distance from the focus \mathcal{B} as from the directrice ℓ.

Then the general equation of the conic section reduces to

$$
(x-B)^{2}+y^{2}=(x-L)^{2},
$$

and we can write it as
$y^{2}=(x-L)^{2}-(x-B)^{2}=x^{2}-2 x L+L^{2}-x^{2}+2 x B-B^{2}=2(B-L) x+\left(L^{2}-B^{2}\right)$,
that is

$$
y^{2}=2(B-L) x+\left(L^{2}-B^{2}\right)
$$

If we want to find the intersection of the conic section with the x-axis, we have to replace $y=0$ in the above equation. So we have

$$
0=2(B-L) x+\left(L^{2}-B^{2}\right)
$$

that is

$$
2(L-B) x=\left(L^{2}-B^{2}\right)=(L-B)(L+B)
$$

so after cancel out some the $(L-B)$ term we have that

$$
x_{1}=x=\frac{L+B}{2}
$$

that we can the vertex of the parabola.

2.3 Hyperbola

We suppose that $\varepsilon>1$. First we compute the intersection of the conic section with the x-axis. To do that we have to replace $y=0$ in the general equation of the conic section, so it follows the equation

$$
(x-B)^{2}=\varepsilon^{2}(x-L)^{2} .
$$

This is equivalent to the equation

$$
\sqrt{(x-B)^{2}}= \pm \sqrt{\varepsilon^{2}(x-L)^{2}},
$$

so we have

$$
(x-B)= \pm \varepsilon(x-L),
$$

Here we encounter to possibilities: First suppose the equation

$$
(x-B)=-\varepsilon(x-L),
$$

that is equivalent to

$$
(1+\varepsilon) x=B+\varepsilon L,
$$

so the first point that intersects the x-axis is

$$
x_{1}=x=\frac{B+\varepsilon L}{1+\varepsilon} .
$$

Finally suppose the equation

$$
(x-B)=+\varepsilon(x-L),
$$

that is equivalent to

$$
(1-\varepsilon) x=B-\varepsilon L,
$$

so the second point that intersects the x-axis is

$$
x_{2}=x=\frac{B-\varepsilon L}{1-\varepsilon} .
$$

A simple calculation yields that $x_{1}>x_{2}$. Observe that this is the opposite that happens in the ellipse situation.

definitions	
center	$\bar{x}=\frac{x_{1}+x_{2}}{2}$
major axis	$a=\frac{x_{1}-x_{2}}{2}$
minor axis	$b=a \sqrt{\varepsilon^{2}-1}$

With this definitions on hand we can rewrite the general equation in the following way

$$
\frac{(x-\bar{x})^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1,
$$

that we call the standard equation of the hyperbola.

Conversely,

$\frac{(x-\bar{x})^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$	
eccentricity	$\varepsilon=\sqrt{1+\frac{b^{2}}{a^{2}}}$
directrice	$L=\bar{x}+\frac{a}{\varepsilon}$
focus	$B=\bar{x}+\varepsilon \cdot a$

From the standard equation of the hyperbola one can observe that the hyperbola is symmetric with respect to the vertical line $x=\bar{x}$. Therefore if we define

$$
B_{2}=\bar{x}-\varepsilon \cdot a \quad \text { and } \quad \mathrm{L}_{2}=\overline{\mathrm{x}}-\frac{\mathrm{a}}{\varepsilon}
$$

we have that the triple given by eccentricity ε, focus point $\mathcal{B}_{2}=\left(B_{2}, 0\right)$ and the directrice line ℓ_{2} given by $x=L_{2}$, determines the same conic section as $(\varepsilon, \mathcal{B}, \ell)$. Thus, $\mathcal{B}_{1}=\mathcal{B}$ and \mathcal{B}_{2} are called the two focus points of the hyperbola.

Now given the two focus of the hyperbola \mathcal{B}_{1} and \mathcal{B}_{2} we can give an alternative geometric description, in the following way: An hyperbola is the set of points such that the difference of the distances from any point on the ellipse to \mathcal{B}_{1} and \mathcal{B}_{2} is constant and equal to $2 a$, that is

$$
\left|\mathcal{P B}_{1}\right|-\left|\mathcal{P B}_{2}\right|=2 a \quad \text { or } \quad\left|\mathcal{P} \mathcal{B}_{2}\right|-\left|\mathcal{P} \mathcal{B}_{1}\right|=2 \mathrm{a} .
$$

2.3.1 Examples

1. Find the equation of the hyperbola with eccentricity $\varepsilon=2$, directrice line $x=-1$ and focus $\mathcal{B}=(1,0)$. Then according the formulas we have

$$
x_{1}=\frac{1+2(-1)}{1+2}=-\frac{1}{3} \quad x_{2}=\frac{1-2(-1)}{1-2}=\frac{3}{-1}=-3
$$

and hence the center of the hyperbola is

$$
\bar{x}=\frac{-1 / 3-3}{2}=-5 / 3,
$$

and

$$
a=\frac{-1 / 3-(-3)}{2}=4 / 3 \quad b=4 / 3 \cdot \sqrt{2^{2}-1}=4 / 3 \cdot \sqrt{3}=\frac{4}{\sqrt{3}} .
$$

Therefore the equation is

$$
\frac{(x+5 / 3)^{2}}{(4 / 3)^{2}}-\frac{y^{2}}{\left(\frac{4}{\sqrt{3}}\right)^{2}}=1
$$

so

$$
\frac{9(x+5 / 3)^{2}}{16}-\frac{3 y^{2}}{16}=1
$$

2. Let $\mathcal{B}_{1}=(-1,0)$ and $\mathcal{B}_{2}=(3,0)$ be two points in the plane. We want to give the equation of the hyperbola such points \mathcal{P} satisfy

$$
\left|\mathcal{P B}_{1}\right|-\left|\mathcal{P B}_{2}\right|=6 \quad \text { or } \quad\left|\mathcal{P} \mathcal{B}_{2}\right|-\left|\mathcal{P} \mathcal{B}_{1}\right|=6
$$

First observe that the formulas say that $2 a=6$, and hence $a=3$. The center of the ellipse is the mid-point between \mathcal{B}_{1} and \mathcal{B}_{2} that is $\bar{x}=2$. We need now to calculate the eccentricity, that from the above formulas comes from the relation

$$
\left|\mathcal{B}_{1} \mathcal{B}_{2}\right|=\frac{2 a}{\varepsilon},
$$

so we have that $4=\frac{2 \cdot 3}{\varepsilon}$, and follows that $\varepsilon=3 / 2$. Finally, we have that $b=$ $a \sqrt{\varepsilon^{2}-1}$, so $b=3 \sqrt{5 / 4}=\frac{3 \sqrt{5}}{2}$. Therefore the equation of the hyperbola is

$$
\frac{(x-2)^{2}}{9}-\frac{4 y^{2}}{45}=1
$$

3 Change of coordinates

In the above section we have supposed that the directrice line is parallel to the y-axis, i.e., $x=L$ and the focus is over the x-axis, i.e. $\mathcal{B}=(B, 0)$, but what happens with the general situation where we have any given line and point? Change of coordinates!

3.1 translation

A translation to a point (a, b) is a change of coordinates (x, y) to a new coordinates (\bar{x}, \bar{y}) in such a way

$$
\bar{x}=x-a \quad \text { and } \quad \overline{\mathrm{y}}=\mathrm{y}-\mathrm{b} .
$$

Roughly speaking, a translation moves the origin to the point (a, b).

We can reverse the change of coordinates from the new coordinates (\bar{x}, \bar{y}) to the old ones:

$$
x=\bar{x}+a \quad \text { and } \quad \mathrm{y}=\overline{\mathrm{y}}+\mathrm{b} .
$$

3.1.1 Examples

1. We consider the translation to the point $(1,2)$. Then:

(x, y)-coordinates	(\bar{x}, \bar{y})-coordinates
$(0,0)$	$(-1,-2)$
$(1,2)$	$(0,0)$
$y=x$	$\bar{y}+2=\bar{x}+1$ $\bar{y}=\bar{x}-1$
$x^{2}+y^{2}=1$	$(\bar{x}+1)^{2}+(\bar{y}+2)^{2}=1$

2. We want to find the equation of the ellipse that has eccentricity $\varepsilon=1 / 2$, directrice line $x=1$ and focus (3, 2).

Observe that if we make a translation to the point $(2,2)$ we have the following

(x, y)-coordinates	(\bar{x}, \bar{y})-coordinates
$(3,2)$	$(1,0)$
$x=1$	$\bar{x}+2=1$
	$\bar{x}=-1$

So now we can construct the ellipse with eccentricity $\varepsilon=1 / 2$, directrice line $\bar{x}=-1=L$ and focus $(1,0)$, so $B=1$. According the formulas we have that

$$
x_{1}=\frac{1+1 / 2 \cdot(-1)}{1+1 / 2}=\frac{1 / 2}{3 / 2}=1 / 3
$$

and

$$
x_{2}=\frac{1-1 / 2 \cdot(-1)}{1-1 / 2}=\frac{3 / 2}{1 / 2}=3 .
$$

thus

$$
\begin{aligned}
& \bar{x}=\frac{1 / 3+3}{2}=\frac{10 / 3}{2}=5 / 3 \\
& a=\frac{3-1 / 3}{2}=\frac{8 / 3}{2}=4 / 3
\end{aligned}
$$

and

$$
b=4 / 3 \cdot \sqrt{1-(1 / 2)^{2}}=4 / 3 \cdot \sqrt{3 / 4}=\frac{2}{\sqrt{3}} .
$$

Therefore the equation of the ellipse in the (\bar{x}, \bar{y}) coordinates is

$$
\frac{(\bar{x}-5 / 3)^{2}}{(4 / 3)^{2}}+\frac{\bar{y}^{2}}{\left(\frac{2}{\sqrt{3}}\right)^{2}}=1
$$

that we can rewrite as

$$
\frac{(\bar{x}-5 / 3)^{2}}{16 / 9}+\frac{\bar{y}^{2}}{4 / 3}=1 .
$$

Finally we return to the old coordinates (x, y), using that

$$
\bar{x}=x-2 \quad \text { and } \quad \overline{\mathrm{y}}=\mathrm{y}-2 .
$$

So replacing this to the equation we have

$$
\frac{((x-2)-5 / 3)^{2}}{16 / 9}+\frac{(y-2)^{2}}{4 / 3}=1
$$

that is

$$
\frac{(x-11 / 3)^{2}}{16 / 9}+\frac{(y-2)^{2}}{4 / 3}=1
$$

3.2 rotation

A rotation with angle θ is a change of coordinates (x, y) to a new coordinates (\bar{x}, \bar{y}) in such a way

$$
\bar{x}=x \cos \theta+y \sin \theta \quad \text { and } \quad \overline{\mathrm{y}}=-\mathrm{x} \sin \theta+\mathrm{y} \cos \theta
$$

We can reverse the change of coordinates from the new coordinates (\bar{x}, \bar{y}) to the old ones:

$$
x=\bar{x} \cos \theta-\bar{y} \sin \theta \quad \text { and } \quad \mathrm{y}=\overline{\mathrm{x}} \sin \theta+\overline{\mathrm{y}} \cos \theta .
$$

3.2.1 Examples

1. We consider the a rotation of 45°. Then:

(x, y)-coordinates	(\bar{x}, \bar{y})-coordinates
$(0,0)$	$(0,0)$
$(1,1)$	$(\sqrt{2}, 0)$
$y=-x-1$	$\left(\frac{\sqrt{2}}{2} \bar{x}+\frac{\sqrt{2}}{2} \bar{y}\right)=-\left(\frac{\sqrt{2}}{2} \bar{x}-\frac{\sqrt{2}}{2} \bar{y}\right)-1$ $\bar{x}=-\frac{1}{\sqrt{2}}$

2. We want to find the equation of the parabola with directrice line $y=-x-1$ and focus $(1,1)$.

Observe that if we make a translation of 45° in the new coordinates (\bar{x}, \bar{y}) the directrice line has equation $\bar{x}=-\frac{1}{\sqrt{2}}$ and the focus $(\sqrt{2}, 0)$. Then we can write the equation of the parabola

$$
\bar{y}^{2}=2\left(\sqrt{2}-\left(-\frac{1}{\sqrt{2}}\right)\right) \bar{x}+\left(\left(-\frac{1}{\sqrt{2}}\right)^{2}\right)-(\sqrt{2})^{2}=\frac{3}{\sqrt{2}} \bar{x}-\frac{3}{2}
$$

Finally, making the change of coordinate to the old coordinates (x, y), we have that

$$
\left(-\frac{\sqrt{2}}{2} x+\frac{\sqrt{2}}{2} y\right)^{2}=\frac{3}{\sqrt{2}}\left(\frac{\sqrt{2}}{2} x+\frac{\sqrt{2}}{2} y\right)-\frac{3}{2}
$$

so it follows that

$$
\frac{1}{2} x^{2}+\frac{1}{2} y^{2}-x y=\frac{3}{2} x+\frac{3}{2} y-\frac{3}{2}
$$

and hence the final equation is

$$
x^{2}+y^{2}-2 x y-3 x-3 y+3=0
$$

