Norwegian University of Science and Technology
Department of Mathematical
Sciences

1 Differentiate the given functions below and simplify your answers if possible. Also state when the domain of the derivatives.
a) $f: \mathbb{R} \rightarrow \mathbb{R}, \quad x \mapsto e^{\left(e^{x}\right)}$
b) $f: \mathbb{R} \rightarrow \mathbb{R}, \quad x \mapsto \frac{e^{x}}{1+e^{x}}$
c) $f: \mathbb{R} \rightarrow \mathbb{R}, \quad x \mapsto 2^{\left(x^{2}-3 x+8\right)}$

Hint: Use chain rule of differentiation.

Solution.

a) $f(x)=e^{\left(e^{x}\right)}, f^{\prime}(x)=e^{\left(e^{x}\right)} e^{x}=e^{x+e^{x}}, x \in \mathbb{R}$.
b) $f(x)=\frac{e^{x}}{1+e^{x}}=1-\frac{1}{1+e^{x}}, f^{\prime}(x)=\frac{e^{x}}{\left(1+e^{x}\right)^{2}}, x \in \mathbb{R}$.
c) $f(x)=2^{\left(x^{2}-3 x+8\right)}, f^{\prime}(x)=(2 x-3)(\ln 2) 2^{\left(x^{2}-3 x+8\right)}, x \in \mathbb{R}$.

2 Let a function given by $f(x)=A e^{x} \cos (x)+B e^{x} \sin (x)$, where $x \in \mathbb{R}$, and A, B are real constants. Find $\frac{\mathrm{d}}{\mathrm{d} x} f(x)$.

Solution.

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} f(x) & =A e^{x} \cos (x)-A e^{x} \sin (x)+B e^{x} \sin (x)+B e^{x} \cos (x) \\
& =(A+B) e^{x} \cos (x)+(B-A) e^{x} \sin (x)
\end{aligned}
$$

3 Find $\frac{\mathrm{d}}{\mathrm{d} x}\left(A e^{a x} \cos (b x)+B e^{a x} \sin (b x)\right)$ and use this to calculate the indefinite integrals

$$
\int e^{a x} \cos (b x) \mathrm{d} x \quad \text { and } \quad \int e^{a x} \sin (b x) \mathrm{d} x
$$

Solution.

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} x}\left(A e^{a x} \cos (b x)+B e^{a x} \sin (b x)\right) \\
= & A a e^{a x} \cos (b x)-A b e^{a x} \sin (b x)+B a e^{a x} \sin (b x)+B b e^{a x} \cos (b x) \\
= & (A a+B b) e^{a x} \cos (b x)+(B a-A b) e^{a x} \sin (b x) .
\end{aligned}
$$

If $A a+B b=1$ and $B a-A b=0$, then $A=\frac{a}{a^{2}+b^{2}}$ and $B=\frac{b}{a^{2}+b^{2}}$. Thus

$$
\int e^{a x} \cos (b x) \mathrm{d} x=\frac{1}{a^{2}+b^{2}}\left(a e^{a x} \cos (b x)+b e^{a x} \sin (b x)\right)+C .
$$

If $A a+B b=0$ and $B a-A b=1$, then $A=\frac{-b}{a^{2}+b^{2}}$ and $B=\frac{a}{a^{2}+b^{2}}$. Thus

$$
\int e^{a x} \sin (b x) \mathrm{d} x=\frac{1}{a^{2}+b^{2}}\left(a e^{a x} \sin (b x)-b e^{a x} \cos (b x)\right)+C .
$$

4 Find the sum of the given series below, or show that the series diverge.
a) $\sum_{k=0}^{\infty} \frac{2^{k+3}}{e^{k-3}}$
b) $\sum_{n=1}^{\infty} \frac{1}{(2 n-1)(2 n+1)}=\frac{1}{1 \times 3}+\frac{1}{3 \times 5}+\frac{1}{5 \times 7}+\cdots$

Hint: Use that $\frac{1}{(2 n-1)(2 n+1)}=\frac{1}{2}\left(\frac{1}{2 n-1}-\frac{1}{2 n+1}\right)$.
c) $\sum_{n=1}^{\infty} \frac{1}{2 n-1}$

Solution.

a)

$$
\sum_{k=0}^{\infty} \frac{2^{k+3}}{e^{k-3}}=8 e^{3} \sum_{k=0}^{\infty}\left(\frac{2}{e}\right)^{k}=\frac{8 e^{3}}{1-\frac{2}{e}}=\frac{8 e^{4}}{e-2}
$$

b)

Let

$$
\sum_{n=1}^{\infty} \frac{1}{(2 n-1)(2 n+1)}=\frac{1}{1 \times 3}+\frac{1}{3 \times 5}+\frac{1}{5 \times 7}+\cdots
$$

Since

$$
\frac{1}{(2 n-1)(2 n+1)}=\frac{1}{2}\left(\frac{1}{2 n-1}-\frac{1}{2 n+1}\right)
$$

the partial sum is

$$
\begin{aligned}
s_{n} & =\frac{1}{2}\left(1-\frac{1}{3}\right)+\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}\right)+\cdots+\frac{1}{2}\left(\frac{1}{2 n-3}-\frac{1}{2 n-1}\right)+\frac{1}{2}\left(\frac{1}{2 n-1}-\frac{1}{2 n+1}\right) \\
& =\frac{1}{2}\left(1-\frac{1}{2 n+1}\right) .
\end{aligned}
$$

Hence,

$$
\sum_{n=1}^{\infty} \frac{1}{(2 n-1)(2 n+1)}=\lim _{n \rightarrow \infty} s_{n}=\frac{1}{2}
$$

c)

Since $\frac{1}{2 n-1}>\frac{1}{2 n}=\frac{1}{2} \cdot \frac{1}{n}$, therefore the partial sums of the given series exceed half those of the divergent harmonic series $\sum_{n=1}^{\infty} \frac{1}{2 n}$. Hence the given series diverges to infinity.

5 Use problem 4b) to show that $\lim _{M, N \rightarrow \infty} \sum_{n=M}^{N} \frac{1}{n^{2}}=0$, and thus that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges.

Solution. The sum in problem 4b) can be written as

$$
\sum_{n=1}^{\infty} \frac{1}{(2 n-1)(2 n+1)}=\sum_{n=1}^{\infty} \frac{1}{4 n^{2}-1} .
$$

Thus for each n, it holds that $\frac{1}{4 n^{2}} \leq \frac{1}{(2 n-1)(2 n+1)}$. We can hence write

$$
\sum_{n=M}^{N} \frac{1}{n^{2}} \leq 4 \sum_{n=M}^{N} \frac{1}{4 n^{2}-1}=4\left(s_{N}-s_{M}\right)
$$

where s_{N} is the n :th partial sum from problem 4b). This quantity goes to zero as $M, N \rightarrow \infty$ as can be seen by

$$
s_{N}-s_{M}=\frac{1}{2}\left(1-\frac{1}{2 N+1}-1+\frac{1}{2 M+1}\right) \rightarrow 0
$$

as $M, N \rightarrow \infty$. The conclusion is that the partial sums of $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ make up a Cauchy sequence and hence are convergent.

6 Decide whether the given statements are TRUE or FALSE. If it is TRUE, prove it. If it is FALSE, give a counterexample.
a) If $\sum_{n=1}^{\infty} a_{n}$ converges, then $\sum_{n=1}^{\infty} \frac{1}{a_{n}}$ diverges to infinity.
b) If $a_{n} \geq c>0$ for every n, then $\sum_{n=1}^{\infty} a_{n}$ diverges to infinity.
c) If $a_{n}>0$ and $\sum_{n=1}^{\infty} a_{n}$ converges, then $\sum_{n=1}^{\infty}\left(a_{n}\right)^{2}$ converges.

Solution.

a)

FALSE. A counterexample is $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{2^{n}}$. Clearly,

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{2^{n}}=\lim _{n \rightarrow \infty} \frac{-\frac{1}{2}\left[1-\left(-\frac{1}{2}\right)^{n}\right]}{1-\left(-\frac{1}{2}\right)}=-\frac{1}{3}
$$

is convergent. However, $\sum_{n=1}^{\infty} \frac{2^{n}}{(-1)^{n}}$ is oscillating to $-\infty$ and ∞ as $n \rightarrow \infty$. So it diverges, but not only diverges to infinity.
b)

TRUE. We have

$$
s_{n}=a_{1}+a_{2}+a_{3}+\cdots+a_{n} \geq c+c+c+\cdots+c=n c,
$$

and $n c \rightarrow \infty$ as $n \rightarrow \infty$.
c)

TRUE. Since $\sum_{n=1}^{\infty} a_{n}$ converges, therefore $\lim _{n \rightarrow \infty} a_{n}=0$.
Thus there exists N such that $0<a_{n} \leq 1$ for $n \geq N$. Thus $0<a_{n}^{2} \leq a_{n}$ for $n \geq N$.
If $S_{n}=\sum_{k=N}^{n} a_{k}^{2}$ and $s_{n}=\sum_{k=N}^{n} a_{k}$, then $\left\{S_{n}\right\}$ is increasing and bounded above:

$$
S_{n} \leq s_{n} \leq \sum_{k=1}^{\infty} a_{k}<\infty
$$

Thus $\sum_{k=N}^{\infty} a_{k}^{2}$ converges, and so $\sum_{k=1}^{\infty} a_{k}^{2}$ converges.

7 The hyperbolic trigonometric functions are defined as

$$
\sinh (x)=\frac{e^{x}-e^{-x}}{2}, \quad \cosh (x)=\frac{e^{x}+e^{-x}}{2}
$$

In this exercise we will deduce properties of these functions.
a) Compute the first and second derivatives of $y(x)=\sinh (x)$. What can you say about the quantity

$$
y^{\prime \prime}(x)-y(x) ?
$$

b) Show that

$$
\cosh (x)^{2}-\sinh (x)^{2}=1
$$

c) Find an expression for $\sinh ^{-1}(x)$.

Solution.

a)

We compute

$$
\begin{aligned}
\frac{d}{d x} \sinh (x) & =\frac{e^{x}}{2}-\frac{-e^{-x}}{2}=\frac{e^{x}+e^{-x}}{2}=\cosh (x) \\
\frac{d}{d x} \cosh (x) & =\frac{e^{x}}{2}+\frac{-e^{-x}}{2}=\frac{e^{x}-e^{-x}}{2}=\sinh (x)
\end{aligned}
$$

Thus

$$
y^{\prime \prime}(x)-y(x)=\sinh (x)-\sinh (x)=0
$$

b) We compute

$$
\begin{aligned}
\cosh (x)^{2}-\sinh (x)^{2} & =\left(\frac{e^{x}+e^{-x}}{2}\right)^{2}-\left(\frac{e^{x}-e^{-x}}{2}\right)^{2} \\
& =\frac{1}{4}\left(e^{2 x}+2+e^{-2 x}\right)-\frac{1}{4}\left(e^{2 x}-2+e^{-2 x}\right)=\frac{4}{4}=1
\end{aligned}
$$

c) We solve $y=\sinh (x)=\frac{1}{2}\left(e^{x}-e^{-x}\right)$ for y as

$$
2 y=e^{x}-e^{-x} \Longrightarrow 2 y e^{x}=\left(e^{x}\right)^{2}-1
$$

Let $t=e^{x}$ so that the above can be written as

$$
2 y t=t^{2}-1 \Longrightarrow t^{2}-2 y t-1=0 \Longrightarrow t=y \pm \sqrt{y^{2}+1}
$$

Note that the solution corresponding to the negative root is negative which $t=e^{x}$ never is since we assume $x \in \mathbb{R}$. We therefore choose the positive root for the inverse and take the logarithm to get x alone as

$$
x=\sinh ^{-1}(y)=\ln \left(y+\sqrt{y^{2}+1}\right) .
$$

8 The function $\tanh (x)=\frac{\sinh (x)}{\cosh (x)}$ is sometimes used as an activation function for neural networks due to its range, monoticity, smoothness and limit properties - let's verify these!

- Show that the derivative of tanh exists everywhere and is a continuous function.
- Show that tanh is an increasing function.
- Show that $\lim _{x \rightarrow \pm \infty} \tanh (x)= \pm 1$.
- Determine the range of tanh.

Solution.

- We compute the derivative as

$$
\frac{d}{d x} \frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}=\frac{4}{\left(e^{x}+e^{-x}\right)^{2}}
$$

which exists everywhere as $e^{x}+e^{-x}>0$ for all x. To see that this function is continuous, note that it is the composition of continuous functions as e^{x} is continuous.

- The function being increasing follows as a simple consequence of $\frac{d}{d x} \tanh (x)=$ $\frac{4}{\left(e^{x}+e^{-x}\right)^{2}}>0$.
- By inspection, tanh is an odd function and so it suffices to verify the behavior as $x \rightarrow \infty$. We write

$$
\lim _{x \rightarrow \infty} \tanh (x)=\lim _{x \rightarrow \infty} \frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}=\lim _{x \rightarrow \infty} \frac{1-e^{-2 x}}{1+e^{-2 x}}=\frac{1}{1}=1
$$

- By oddness, it suffices to determine the range of tanh on $[0, \infty)$. We first note that $\tanh (x)<1$ for all $x>0$ since

$$
\tanh (x)=\frac{1-e^{-2 x}}{1+e^{-2 x}}
$$

by the above calculation. By combining this with the limit result, we conclude that for any $y \in[0,1)$, we can find an $x \in[0, \infty)$ such that $y<\tanh (x)<1$. It now follows by the intermediate value theorem that the range of \tanh on $[0, \infty)$ is $[0,1)$. Indeed, let $y \in[0,1)$ and choose z such that $y<\tanh (z)<1$. Applying the intermediate value theorem, we get existence of an $x \in(0, z)$ such that $\tanh (x)=y$.
By reflecting to get the range on all of \mathbb{R}, we conclude that the range of tanh is $(-1,1)$.

