MA1101 Basic Calculus I Fall 2022 Norwegian University of Science and Technology Department of Mathematical Sciences

- 1 Differentiate the given functions below and simplify your answers if possible. Also state when the domain of the derivatives.
 - a) $f: \mathbb{R} \to \mathbb{R}, \quad x \mapsto e^{(e^x)}$ b) $f: \mathbb{R} \to \mathbb{R}, \quad x \mapsto \frac{e^x}{1+e^x}$ c) $f: \mathbb{R} \to \mathbb{R}, \quad x \mapsto 2^{(x^2-3x+8)}$ *Hint: Use chain rule of differentiation.*

Solution.

- a) $f(x) = e^{(e^x)}, f'(x) = e^{(e^x)}e^x = e^{x+e^x}, x \in \mathbb{R}.$ b) $f(x) = \frac{e^x}{1+e^x} = 1 - \frac{1}{1+e^x}, f'(x) = \frac{e^x}{(1+e^x)^2}, x \in \mathbb{R}.$ c) $f(x) = 2^{(x^2-3x+8)}, f'(x) = (2x-3)(\ln 2)2^{(x^2-3x+8)}, x \in \mathbb{R}.$
 - 2 Let a function given by $f(x) = Ae^x \cos(x) + Be^x \sin(x)$, where $x \in \mathbb{R}$, and A, B are real constants. Find $\frac{\mathrm{d}}{\mathrm{d}x} f(x)$.

Solution.

$$\frac{\mathrm{d}}{\mathrm{d}x}f(x) = Ae^x \cos(x) - Ae^x \sin(x) + Be^x \sin(x) + Be^x \cos(x)$$
$$= (A+B)e^x \cos(x) + (B-A)e^x \sin(x).$$

3 Find
$$\frac{\mathrm{d}}{\mathrm{d}x} \left(Ae^{ax} \cos(bx) + Be^{ax} \sin(bx) \right)$$
 and use this to calculate the indefinite integrals $\int e^{ax} \cos(bx) \,\mathrm{d}x$ and $\int e^{ax} \sin(bx) \,\mathrm{d}x$.

Solution.

$$\frac{\mathrm{d}}{\mathrm{d}x} \Big(Ae^{ax} \cos(bx) + Be^{ax} \sin(bx) \Big)$$

= $Aae^{ax} \cos(bx) - Abe^{ax} \sin(bx) + Bae^{ax} \sin(bx) + Bbe^{ax} \cos(bx)$
= $(Aa + Bb)e^{ax} \cos(bx) + (Ba - Ab)e^{ax} \sin(bx).$

If Aa + Bb = 1 and Ba - Ab = 0, then $A = \frac{a}{a^2 + b^2}$ and $B = \frac{b}{a^2 + b^2}$. Thus

$$\int e^{ax} \cos(bx) \,\mathrm{d}x = \frac{1}{a^2 + b^2} \Big(a e^{ax} \cos(bx) + b e^{ax} \sin(bx) \Big) + C.$$

If Aa + Bb = 0 and Ba - Ab = 1, then $A = \frac{-b}{a^2 + b^2}$ and $B = \frac{a}{a^2 + b^2}$. Thus

$$\int e^{ax} \sin(bx) \, \mathrm{d}x = \frac{1}{a^2 + b^2} \Big(a e^{ax} \sin(bx) - b e^{ax} \cos(bx) \Big) + C.$$

4 Find the sum of the given series below, or show that the series diverge.

a)
$$\sum_{k=0}^{\infty} \frac{2^{k+3}}{e^{k-3}}$$

b) $\sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)} = \frac{1}{1\times 3} + \frac{1}{3\times 5} + \frac{1}{5\times 7} + \cdots$
Hint: Use that $\frac{1}{(2n-1)(2n+1)} = \frac{1}{2} \left(\frac{1}{2n-1} - \frac{1}{2n+1} \right)$.
c) $\sum_{n=1}^{\infty} \frac{1}{2n-1}$

Solution.

a)

$$\sum_{k=0}^{\infty} \frac{2^{k+3}}{e^{k-3}} = 8e^3 \sum_{k=0}^{\infty} \left(\frac{2}{e}\right)^k = \frac{8e^3}{1-\frac{2}{e}} = \frac{8e^4}{e-2}.$$

b)

Let

$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)} = \frac{1}{1\times 3} + \frac{1}{3\times 5} + \frac{1}{5\times 7} + \cdots$$

Since

$$\frac{1}{(2n-1)(2n+1)} = \frac{1}{2} \Big(\frac{1}{2n-1} - \frac{1}{2n+1} \Big),$$

the partial sum is

$$s_n = \frac{1}{2} \left(1 - \frac{1}{3} \right) + \frac{1}{2} \left(\frac{1}{3} - \frac{1}{5} \right) + \dots + \frac{1}{2} \left(\frac{1}{2n-3} - \frac{1}{2n-1} \right) + \frac{1}{2} \left(\frac{1}{2n-1} - \frac{1}{2n+1} \right)$$
$$= \frac{1}{2} \left(1 - \frac{1}{2n+1} \right).$$

Hence,

$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)} = \lim_{n \to \infty} s_n = \frac{1}{2}.$$

	`
r	۱
U	,
	/

Since $\frac{1}{2n-1} > \frac{1}{2n} = \frac{1}{2} \cdot \frac{1}{n}$, therefore the partial sums of the given series exceed half those of the divergent harmonic series $\sum_{n=1}^{\infty} \frac{1}{2n}$. Hence the given series diverges to infinity.

5 Use problem 4b) to show that $\lim_{M,N\to\infty} \sum_{n=M}^{N} \frac{1}{n^2} = 0$, and thus that $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges.

Solution. The sum in problem 4b) can be written as

$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)} = \sum_{n=1}^{\infty} \frac{1}{4n^2 - 1}.$$

Thus for each n, it holds that $\frac{1}{4n^2} \leq \frac{1}{(2n-1)(2n+1)}$. We can hence write

$$\sum_{n=M}^{N} \frac{1}{n^2} \le 4 \sum_{n=M}^{N} \frac{1}{4n^2 - 1} = 4(s_N - s_M)$$

where s_N is the *n*:th partial sum from problem 4b). This quantity goes to zero as $M, N \to \infty$ as can be seen by

$$s_N - s_M = \frac{1}{2} \left(1 - \frac{1}{2N+1} - 1 + \frac{1}{2M+1} \right) \to 0$$

as $M, N \to \infty$. The conclusion is that the partial sums of $\sum_{n=1}^{\infty} \frac{1}{n^2}$ make up a Cauchy sequence and hence are convergent.

- 6 Decide whether the given statements are TRUE or FALSE. If it is TRUE, prove it. If it is FALSE, give a counterexample.
 - a) If ∑_{n=1}[∞] a_n converges, then ∑_{n=1}[∞] 1/a_n diverges to infinity.
 b) If a_n ≥ c > 0 for every n, then ∑_{n=1}[∞] a_n diverges to infinity.
 c) If a_n > 0 and ∑_{n=1}[∞] a_n converges, then ∑_{n=1}[∞] (a_n)² converges.

Solution.

a)

FALSE. A counterexample is
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{2^n}$$
. Clearly,
 $\sum_{n=1}^{\infty} \frac{(-1)^n}{2^n} = \lim_{n \to \infty} \frac{-\frac{1}{2} \left[1 - \left(-\frac{1}{2}\right)^n\right]}{1 - \left(-\frac{1}{2}\right)} = -\frac{1}{3}$

is convergent. However, $\sum_{n=1}^{\infty} \frac{2^n}{(-1)^n}$ is oscillating to $-\infty$ and ∞ as $n \to \infty$. So it diverges, but not only diverges to infinity.

b)

TRUE. We have

$$s_n = a_1 + a_2 + a_3 + \dots + a_n \ge c + c + c + \dots + c = nc$$

and $nc \to \infty$ as $n \to \infty$.

c)

TRUE. Since $\sum_{n=1}^{\infty} a_n$ converges, therefore $\lim_{n \to \infty} a_n = 0$.

Thus there exists N such that $0 < a_n \leq 1$ for $n \geq N$. Thus $0 < a_n^2 \leq a_n$ for $n \geq N$.

If
$$S_n = \sum_{k=N}^n a_k^2$$
 and $s_n = \sum_{k=N}^n a_k$, then $\{S_n\}$ is increasing and bounded above:
 $S_n \le s_n \le \sum_{k=1}^\infty a_k < \infty$.
Thus $\sum_{k=N}^\infty a_k^2$ converges, and so $\sum_{k=1}^\infty a_k^2$ converges.

7 The hyperbolic trigonometric functions are defined as

$$\sinh(x) = \frac{e^x - e^{-x}}{2}, \qquad \cosh(x) = \frac{e^x + e^{-x}}{2}.$$

In this exercise we will deduce properties of these functions.

a) Compute the first and second derivatives of $y(x) = \sinh(x)$. What can you say about the quantity

$$y''(x) - y(x)?$$

b) Show that

$$\cosh(x)^2 - \sinh(x)^2 = 1.$$

c) Find an expression for $\sinh^{-1}(x)$.

Solution.

a)

We compute

$$\frac{d}{dx}\sinh(x) = \frac{e^x}{2} - \frac{-e^{-x}}{2} = \frac{e^x + e^{-x}}{2} = \cosh(x),$$
$$\frac{d}{dx}\cosh(x) = \frac{e^x}{2} + \frac{-e^{-x}}{2} = \frac{e^x - e^{-x}}{2} = \sinh(x).$$

Thus

$$y''(x) - y(x) = \sinh(x) - \sinh(x) = 0.$$

b) We compute

$$\cosh(x)^2 - \sinh(x)^2 = \left(\frac{e^x + e^{-x}}{2}\right)^2 - \left(\frac{e^x - e^{-x}}{2}\right)^2$$
$$= \frac{1}{4}\left(e^{2x} + 2 + e^{-2x}\right) - \frac{1}{4}\left(e^{2x} - 2 + e^{-2x}\right) = \frac{4}{4} = 1.$$

c) We solve $y = \sinh(x) = \frac{1}{2}(e^x - e^{-x})$ for y as

$$2y = e^x - e^{-x} \implies 2ye^x = (e^x)^2 - 1.$$

Let $t = e^x$ so that the above can be written as

$$2yt = t^2 - 1 \implies t^2 - 2yt - 1 = 0 \implies t = y \pm \sqrt{y^2 + 1}.$$

Note that the solution corresponding to the negative root is negative which $t = e^x$ never is since we assume $x \in \mathbb{R}$. We therefore choose the positive root for the inverse and take the logarithm to get x alone as

$$x = \sinh^{-1}(y) = \ln\left(y + \sqrt{y^2 + 1}\right).$$

- 8 The function $tanh(x) = \frac{\sinh(x)}{\cosh(x)}$ is sometimes used as an activation function for neural networks due to its range, monoticity, smoothness and limit properties let's verify these!
 - Show that the derivative of tanh exists everywhere and is a continuous function.
 - Show that tanh is an increasing function.
 - Show that $\lim_{x\to\pm\infty} \tanh(x) = \pm 1$.
 - Determine the range of tanh.

Solution.

• We compute the derivative as

$$\frac{d}{dx}\frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{4}{(e^x + e^{-x})^2}$$

which exists everywhere as $e^x + e^{-x} > 0$ for all x. To see that this function is continuous, note that it is the composition of continuous functions as e^x is continuous.

- The function being increasing follows as a simple consequence of $\frac{d}{dx} \tanh(x) = \frac{4}{(e^x + e^{-x})^2} > 0.$
- By inspection, tanh is an odd function and so it suffices to verify the behavior as $x \to \infty$. We write

$$\lim_{x \to \infty} \tanh(x) = \lim_{x \to \infty} \frac{e^x - e^{-x}}{e^x + e^{-x}} = \lim_{x \to \infty} \frac{1 - e^{-2x}}{1 + e^{-2x}} = \frac{1}{1} = 1.$$

• By oddness, it suffices to determine the range of tanh on $[0, \infty)$. We first note that tanh(x) < 1 for all x > 0 since

$$\tanh(x) = \frac{1 - e^{-2x}}{1 + e^{-2x}}$$

by the above calculation. By combining this with the limit result, we conclude that for any $y \in [0, 1)$, we can find an $x \in [0, \infty)$ such that $y < \tanh(x) < 1$. It now follows by the intermediate value theorem that the range of tanh on $[0, \infty)$ is [0, 1). Indeed, let $y \in [0, 1)$ and choose z such that $y < \tanh(z) < 1$. Applying the intermediate value theorem, we get existence of an $x \in (0, z)$ such that $\tanh(x) = y$.

By reflecting to get the range on all of \mathbb{R} , we conclude that the range of tanh is (-1, 1).