

MA1101 Basic Calculus I Fall 2022

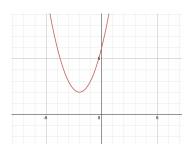
Exercise set 1: Solutions

Norwegian University of Science and Technology Department of Mathematical Sciences

1 Sketch the graph of the following function

$$f(x) = (x+2)^2 + 2.$$

Solution.



2 Show that the triangle inequality

$$|a - b| \le |a| + |b|$$

holds for all real numbers a and b.

Solution. Since both sides of the inequality are non-negative, it suffices to show that $|a+b|^2 < (|a|+|b|)^2$. Indeed,

$$|a+b|^2 = (a+b)^2 = a^2 + b^2 + 2ab = |a|^2 + |b|^2 + 2ab \le |a|^2 + |b|^2 + 2|a||b| = (|a|+|b|)^2$$

where we used that $x \le |x|$ for the $ab \le |ab| = |a||b|$ step.

3 Find the roots of the following polynomial

$$x^4 + 8x^3 + 16x^2$$
.

If a root is repeated, give its multiplicity. Also, write the polynomial as a product of linear factors.

Solution. $x^4 + 8x^3 + 16x^2 = x^2(x^2 + 8x + 16) = x^2(x + 4)^2$. There are two double roots, 0 and -4.

4 Find the natural domain and range of the following functions.

a)
$$f(x) = x^3$$

b)
$$f(x) = \sqrt{8 - 2x}$$

c)
$$f(x) = \frac{1}{1 - \sqrt{x - 2}}$$

Solution.

- a) $f(x) = x^3$; natural domain \mathbb{R} , range \mathbb{R} .
- **b)** $f(x) = \sqrt{8-2x}$; natural domain $(-\infty, 4]$, range $[0, \infty)$.
- c) $f(x) = \frac{1}{1-\sqrt{x-2}}$; the denominator satisfies $x-2 \ge 0$ and $1-\sqrt{x-2} \ne 0$. Thus, natural domain $[2,3) \cup (3,\infty)$. Firstly, the equation y=f(x) can be solved for $x=2+\left(1-\frac{1}{y}\right)^2$ so has a real solution provided $y\ne 0$. Secondly, when $x\in [2,3), \ 0<1-\sqrt{x-2}\le 1$, so we have $f(x)=\frac{1}{1-\sqrt{x-2}}\ge 1$; when $x\in (3,\infty), \ 1-\sqrt{x-2}<0$, so we have $f(x)=\frac{1}{1-\sqrt{x-2}}<0$. Thus, range $(-\infty,0)\cup [1,\infty)$.
 - 5 Suppose that -x belongs to the domain of a function f whenever x does. We say that f is an **even function** if

$$f(-x) = f(x)$$
 for every x in the domain of f.

We say that f is an **odd function** if

$$f(-x) = -f(x)$$
 for every x in the domain of f.

What function f, defined on the real line \mathbb{R} , is both even and odd?

Solution. If f is both even and odd then f(x) = f(-x) = -f(x), so f(x) = 0 identically.

- 6 Let $f(x) = \frac{2}{x}$ and $g(x) = \frac{x}{1-x}$. Construct the following composite functions and specify the natural domain of each.
 - a) $f \circ g$
 - b) $g \circ f$

Solution. a)

$$f \circ g = \frac{2}{\frac{x}{1-x}} = \frac{2(1-x)}{x};$$

natural domain is $\{x \in \mathbb{R} : x \neq 0, 1\}$.

b)
$$g \circ f = \frac{\frac{2}{x}}{1 - \frac{2}{x}} = \frac{2}{x - 2};$$

natural domain is $\{x \in \mathbb{R} : x \neq 0, 2\}$.

The express $(\cos(3x))$ in terms of $(\sin(x))$ and $(\cos(x))$.

Hint: Begin by 3x = 2x + x, and use sum formula of the cosine function.

Solution.

$$\cos(3x) = \cos(2x + x)$$

$$= \cos(2x)\cos(x) - \sin(2x)\sin(x)$$

$$= (2\cos^{2}(x) - 1)\cos(x) - 2\sin^{2}(x)\cos(x)$$

$$= 2\cos^{3}(x) - \cos(x) - 2(1 - \cos^{2}(x))\cos(x)$$

$$= 4\cos^{3}(x) - 3\cos(x).$$

8 A tangent function is defined by

$$\tan(x) = \frac{\sin(x)}{\cos(x)},$$

where $x \in \mathbb{R}$ and $x \neq \frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$.

Specify the natural domain and prove the following identity

$$\frac{1 - \cos(x)}{1 + \cos(x)} = \tan^2\left(\frac{x}{2}\right).$$

Solution. To assure the above equality exists, we need

$$1 + \cos(x) \neq 0$$
 and $\frac{x}{2} \neq \frac{\pi}{2} + k\pi$,

which gives the natural domain

$$\{x \in \mathbb{R} : x \neq \pi + 2k\pi\}.$$

Then

$$\frac{1 - \cos(x)}{1 + \cos(x)} = \frac{2\sin^2\left(\frac{x}{2}\right)}{2\cos^2\left(\frac{x}{2}\right)} = \tan^2\left(\frac{x}{2}\right).$$