You may write solutions in Norwegian or English, as preferable. The most important part is how you arrive at an answer, not the answer itself.

1 Simplify the expressions below.
a) $e^{2 \ln \cos (x)}+\left(\ln e^{\sin (x)}\right)^{2}$
b) $\log _{\pi}(1-\cos (x))+\log _{\pi}(1+\cos (x))-2 \log _{\pi} \sin (x)$
c) $\sinh (\ln x)$, where the hyperbolic sine function is defiend by

$$
\sinh (x)=\frac{e^{x}-e^{-x}}{2}, \quad x \in \mathbb{R} .
$$

2 Let P_{n} denote the partition of the given interval $[a, b]$ into n subintervals of equal length $\Delta x_{i}=\frac{b-a}{n}$. Evaluate the lower Riemann sum $L\left(f, P_{n}\right)$ and the upper Riemann sum $U\left(f, P_{n}\right)$ for the given functions f and the given values of n.
a) $f(x)=x$ on $[0,2]$, with $n=8$
b) $f(x)=e^{x}$ on $[-2,2]$, with $n=4$

3 Express the given limit as a definite integral.
a) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{n} \sqrt{\frac{i}{n}}$
b) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{2}{n} \ln \left(1+\frac{2 i}{n}\right)$

4 Evaluate the integrals below.
a) $\int_{-2}^{2}(x+2) \mathrm{d} x$
b) $\int_{1}^{2}\left(\frac{2}{x^{3}}-\frac{x^{3}}{2}\right) \mathrm{d} x$
c) $\int_{-4}^{4}\left(e^{x}-e^{-x}\right) \mathrm{d} x$

5 Find the indicated derivatives below.
a) $\frac{\mathrm{d}}{\mathrm{d} t} \int_{t}^{3} \frac{\sin (s)}{s} \mathrm{~d} s$
b) $\frac{\mathrm{d}}{\mathrm{d} x} F(\sqrt{x})$, if $F(t)=\int_{0}^{t} \cos \left(s^{2}\right) \mathrm{d} s$

6 Find the following integral of the piecewise continuous function

$$
\int_{0}^{\frac{3 \pi}{2}}|\cos (x)| \mathrm{d} x
$$

7 Let $f(x)=\left\{\begin{array}{ll}1 & \text { if } 0 \leq x \leq 1 \\ 0 & \text { if } 1<x \leq 2\end{array}\right.$. Show that f is integrable on $[0,2]$ and find the value of $\int_{0}^{2} f(x) \mathrm{d} x$.

8 Use the mean-value theorem for integrals to calculate

$$
\lim _{n \rightarrow \infty} \int_{n}^{n+p} \frac{\sin (x)}{x} \mathrm{~d} x, \quad p, n \text { are natural numbers. }
$$

9 Let $f \in C([0,1], \mathbb{R})$ be differentiable on the open interval $(0,1)$, and assume that $4 \int_{\frac{3}{4}}^{1} f(x) \mathrm{d} x=f(0)$. Prove that there exists $c \in(0,1)$, such that $f^{\prime}(c)=0$. Hint: Consider the mean-value theorem for integrals first, then use Rolle's theorem.

