

MA1101 Basic Calculus I Fall 2022

> Exercise set 9 Deadline: Oct. 28

You may write solutions in Norwegian or English, as preferable. The most important part is how you arrive at an answer, not the answer itself.

1 Simplify the expressions below.

a)
$$e^{2\ln\cos(x)} + \left(\ln e^{\sin(x)}\right)^2$$

- **b)** $\log_{\pi} (1 \cos(x)) + \log_{\pi} (1 + \cos(x)) 2 \log_{\pi} \sin(x)$
- c) $\sinh(\ln x)$, where the hyperbolic sine function is defiend by

$$\sinh(x) = \frac{e^x - e^{-x}}{2}, \quad x \in \mathbb{R}.$$

- 2 Let P_n denote the partition of the given interval [a, b] into n subintervals of equal length $\Delta x_i = \frac{b-a}{n}$. Evaluate the lower Riemann sum $L(f, P_n)$ and the upper Riemann sum $U(f, P_n)$ for the given functions f and the given values of n.
 - **a)** f(x) = x on [0, 2], with n = 8

b)
$$f(x) = e^x$$
 on $[-2, 2]$, with $n = 4$

3 Express the given limit as a definite integral.

a)
$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{n} \sqrt{\frac{i}{n}}$$

b)
$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{2}{n} \ln\left(1 + \frac{2i}{n}\right)$$

4 Evaluate the integrals below.

a)
$$\int_{-2}^{2} (x+2) dx$$

b) $\int_{1}^{2} \left(\frac{2}{x^{3}} - \frac{x^{3}}{2}\right) dx$
c) $\int_{-4}^{4} (e^{x} - e^{-x}) dx$

5 Find the indicated derivatives below.

a)
$$\frac{\mathrm{d}}{\mathrm{d}t} \int_t^3 \frac{\sin(s)}{s} \mathrm{d}s$$

b) $\frac{\mathrm{d}}{\mathrm{d}x} F(\sqrt{x}), \text{ if } F(t) = \int_0^t \cos(s^2) \mathrm{d}s$

 $\begin{bmatrix} 6 \end{bmatrix}$ Find the following integral of the piecewise continuous function

$$\int_0^{\frac{3\pi}{2}} |\cos(x)| \,\mathrm{d}x.$$

 $\boxed{7} \text{ Let } f(x) = \begin{cases} 1 & \text{if } 0 \le x \le 1 \\ 0 & \text{if } 1 < x \le 2 \end{cases} \text{ Show that } f \text{ is integrable on } [0,2] \text{ and find the value} \\ & \text{of } \int_0^2 f(x) \, \mathrm{d}x. \end{cases}$

8 Use the mean-value theorem for integrals to calculate

$$\lim_{n \to \infty} \int_n^{n+p} \frac{\sin(x)}{x} \, \mathrm{d}x, \quad p, n \text{ are natural numbers.}$$

9 Let $f \in C([0,1],\mathbb{R})$ be differentiable on the open interval (0,1), and assume that $4\int_{\frac{3}{4}}^{1} f(x) dx = f(0)$. Prove that there exists $c \in (0,1)$, such that f'(c) = 0. Hint: Consider the mean-value theorem for integrals first, then use Rolle's theorem.