Exercise set 8

Deadline: Oct. 21

Department of Mathematical
Sciences

You may write solutions in Norwegian or English, as preferable. The most important part is how you arrive at an answer, not the answer itself.

11 Differentiate the given functions below and simplify your answers if possible. Also state when the domain of the derivatives.
a) $f: \mathbb{R} \rightarrow \mathbb{R}, \quad x \mapsto e^{\left(e^{x}\right)}$
b) $f: \mathbb{R} \rightarrow \mathbb{R}, \quad x \mapsto \frac{e^{x}}{1+e^{x}}$
c) $f: \mathbb{R} \rightarrow \mathbb{R}, \quad x \mapsto 2^{\left(x^{2}-3 x+8\right)}$

Hint: Use chain rule of differentiation.

2 Let a function given by $f(x)=A e^{x} \cos (x)+B e^{x} \sin (x)$, where $x \in \mathbb{R}$, and A, B are real constants. Find $\frac{\mathrm{d}}{\mathrm{d} x} f(x)$.

3 Find $\frac{\mathrm{d}}{\mathrm{d} x}\left(A e^{a x} \cos (b x)+B e^{a x} \sin (b x)\right)$ and use this to calculate the indefinite integrals

$$
\int e^{a x} \cos (b x) \mathrm{d} x \text { and } \int e^{a x} \sin (b x) \mathrm{d} x .
$$

4 Find the sum of the given series below, or show that the series diverge.
a) $\sum_{k=0}^{\infty} \frac{2^{k+3}}{e^{k-3}}$
b) $\sum_{n=1}^{\infty} \frac{1}{(2 n-1)(2 n+1)}=\frac{1}{1 \times 3}+\frac{1}{3 \times 5}+\frac{1}{5 \times 7}+\cdots$

Hint: Use that $\frac{1}{(2 n-1)(2 n+1)}=\frac{1}{2}\left(\frac{1}{2 n-1}-\frac{1}{2 n+1}\right)$.
c) $\sum_{n=1}^{\infty} \frac{1}{2 n-1}$

5 Use problem 4b) to show that $\lim _{M, N \rightarrow \infty} \sum_{n=M}^{N} \frac{1}{n^{2}}=0$, and thus that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges.

6 Decide whether the given statements are TRUE or FALSE. If it is TRUE, prove it. If it is FALSE, give a counterexample.
a) If $\sum_{n=1}^{\infty} a_{n}$ converges, then $\sum_{n=1}^{\infty} \frac{1}{a_{n}}$ diverges to infinity.
b) If $a_{n} \geq c>0$ for every n, then $\sum_{n=1}^{\infty} a_{n}$ diverges to infinity.
c) If $a_{n}>0$ and $\sum_{n=1}^{\infty} a_{n}$ converges, then $\sum_{n=1}^{\infty}\left(a_{n}\right)^{2}$ converges.

7 The hyperbolic trigonometric functions are defined as

$$
\sinh (x)=\frac{e^{x}-e^{-x}}{2}, \quad \cosh (x)=\frac{e^{x}+e^{-x}}{2}
$$

In this exercise we will deduce properties of these functions.
a) Compute the first and second derivatives of $y(x)=\sinh (x)$. What can you say about the quantity

$$
y^{\prime \prime}(x)-y(x) ?
$$

b) Show that

$$
\cosh (x)^{2}-\sinh (x)^{2}=1
$$

c) Find an expression for $\sinh ^{-1}(x)$.

8 The function $\tanh (x)=\frac{\sinh (x)}{\cosh (x)}$ is sometimes used as an activation function for neural networks due to its range, monoticity, smoothness and limit properties - let's verify these!

- Show that the derivative of tanh exists everywhere and is a continuous function.
- Show that tanh is an increasing function.
- Show that $\lim _{x \rightarrow \pm \infty} \tanh (x)= \pm 1$.
- Determine the range of tanh.

