

MA1101 Basic Calculus I Fall 2022

> Exercise set 7 Deadline: Oct. 14

You may write solutions in Norwegian or English, as preferable. The most important part is how you arrive at an answer, not the answer itself.

1 Show that the functions f below are bijective, and calculate the inverse functions f^{-1} . Specify the domains and ranges of f^{-1} .

a) $f: [1, \infty) \to \mathbb{R}, \quad x \mapsto \sqrt{x-1}$ b) $f: (-\infty, -1) \cup (-1, \infty) \to \mathbb{R}, \quad x \mapsto \frac{x}{1+x}$

2 Find the value of x when

$$2^{x^2 - 3} = 4^x.$$

- 3 If functions f and g have respective inverse f^{-1} and g^{-1} , show that the composite function $f \circ g$ has inverse $(f \circ g)^{-1} = g^{-1} \circ f^{-1}$.
- 4 Prove that a function $f : \mathbb{R} \to \mathbb{R}$ which is strictly increasing is injective.

5 Find the sum of the given series below, or show that the series diverge.

a)
$$\sum_{k=0}^{\infty} \frac{2^{k+3}}{e^{k-3}}$$

b) $\sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)} = \frac{1}{1\times 3} + \frac{1}{3\times 5} + \frac{1}{5\times 7} + \cdots$
Hint: Use that $\frac{1}{(2n-1)(2n+1)} = \frac{1}{2} \left(\frac{1}{2n-1} - \frac{1}{2n+1} \right).$
c) $\sum_{n=1}^{\infty} \frac{1}{2n-1}$

6 Find the required Taylor series representations of the functions below. **a)** $f(x) = \frac{1}{4-x^2+2x}$ about x = 1. (*Hint: Make the substitution* t = x - 1)

b)
$$f(x) = \cos^2(x)$$
 about $\frac{\pi}{8}$

- 7 Decide whether the given statements are TRUE or FALSE. If it is TRUE, prove it. If it is FALSE, give a counterexample.
 - a) If ∑_{n=1}[∞] a_n converges, then ∑_{n=1}[∞] 1/a_n diverges to infinity.
 b) If a_n ≥ c > 0 for every n, then ∑_{n=1}[∞] a_n diverges to infinity.
 c) If a_n > 0 and ∑_{n=1}[∞] a_n converges, then ∑_{n=1}[∞] (a_n)² converges.
- 8 Prove that if $\{x_n\}_n$ and $\{y_n\}_n$ are two Cauchy sequences in \mathbb{R} , the sequence $\{x_n+y_n\}_n$ is also a Cauchy sequence in \mathbb{R} .