Norwegian University of Science and Technology

You may write solutions in Norwegian or English, as preferable. The most important part is how you arrive at an answer, not the answer itself.

1 Classify the critical points of the function

$$
f: \mathbb{R} \rightarrow \mathbb{R}, \quad x \mapsto x\left(x^{2}-1\right)^{2}
$$

(That is, decide if they are local/global maxim/minima or not.)

2 Sketch the graph of the function

$$
f: \mathbb{R} \backslash\{ \pm 1\} \rightarrow \mathbb{R}, \quad x \mapsto \frac{x^{3}}{x^{2}-1}
$$

Make a table with the sign of f^{\prime} and $f^{\prime \prime}$, and the corresponding behavior of f. Describe the asymptotes of f (see Chapter 4.6 in Adams for background on asymptotes if necessary).

3 All 80 rooms in a motel will be rented each night if the manager charges 40 NOK or less per room. If he charges $(40+x)$ NOK per room, then $2 x$ rooms will remain vacant. If each rented room costs the manager 10 NOK per day and each unrented room 2 NOK per day in overhead, how much should the manager charge per room to maximize his daily profit?

4 Find the linearization of the given function about the given point.

$$
f: \mathbb{R} \rightarrow \mathbb{R}, \quad x \mapsto \sqrt{3+x^{2}} \quad \text { about } \quad x=1
$$

5 Let $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$ be a polynomial. Show that the Taylor series around $x_{0}=0$ of $p(x)$ is equal to $p(x)$.

6 Find the fourth order Taylor polynomial of the function $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto e^{x}$ at the point $x_{0}=\ln 2$.

7 Calculate
a) $\lim _{x \rightarrow \infty} \frac{3 x+\ln (x)+2 x^{3}}{x^{3}}$.
b) $\lim _{x \rightarrow 0} \frac{\tan (x)-x}{x^{2} \sin (x)}$.

8 Calculate
a) $\lim _{x \rightarrow 0} \frac{\sin (a x)}{\sin (b x)}$, for $a, b>0$.
b) $\lim _{h \rightarrow 0} \frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}$, given that f is twice derivable.

9 Sketch the graph of the function

$$
f: \mathbb{R} \backslash\{0\}, \quad x \mapsto \frac{e^{|x|}}{|x|}
$$

and describe any asymptotes.

