You may write solutions in Norwegian or English, as preferable. The most important part is how you arrive at an answer, not the answer itself.

1 Find the equations of the form $y=k x+m$ tangent at x_{0} to
a) $y=\frac{1}{\sqrt{x}}, \quad x_{0}=9$
b) $y=\frac{1}{x^{2}+1}, \quad x_{0}=0$.

2 Write down a plausible definition for

$$
\lim _{x \rightarrow a^{-}} f(x)=-\infty
$$

3 Show that if $f:[0, \infty) \rightarrow \mathbb{R}$ satisfies $f(x)>0$ for all $x \geq 0$ and $\lim _{x \rightarrow \infty} f(x)=0$, then f attains its maximum.
Hint: We want to be able to restrict our attention to a compact subset of $[0, \infty)$ and apply the extreme value theorem there.

4 Calculate, using the definition, the derivative of the following functions
a) $f: \mathbb{R} \rightarrow \mathbb{R}, \quad x \mapsto 1+4 x-5 x^{2}$
b) $g: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R}, \quad x \mapsto x+\frac{1}{x}$
c) $h:(-1, \infty) \rightarrow(0, \infty), \quad x \mapsto \frac{1}{\sqrt{1+x}}$.

Also determine the maximal domain for the functions f^{\prime}, g^{\prime} and h^{\prime}.

5 Show that the curve $y=x^{2}$ and the straight line $x+4 y=18$ intersect at right angles at one of their two intersection points.

Hint: Find the product of their slopes at their intersection points.

6 Use the factoring of a difference of cubes

$$
a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)
$$

to show that

$$
\frac{\mathrm{d}}{\mathrm{~d} x} x^{\frac{1}{3}}=\frac{1}{3} x^{-\frac{2}{3}}, \quad x \neq 0,
$$

with the help of the definition of derivative.

7 Suppose f is continuous on $[-2,3]$ and $f(-2)=5, f(3)=-5$. Show that f has a zero somewhere in $(-2,3)$.

8 Find
a) $\frac{\mathrm{d}}{\mathrm{d} x}\left(2+|x|^{3}\right)^{\frac{1}{3}}$
b) $\frac{\mathrm{d}}{\mathrm{d} t} f(2-3 f(4-5 t)), \quad f: \mathbb{R} \rightarrow \mathbb{R}$ arbitrary
c) $\left.\frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{\sqrt{x^{2}-1}}{x^{2}+1}\right)\right|_{x=-2}$
and state in a), b) and \mathbf{c}) for which values of x applies.

9 Assume $f(x)$ is continuous at $x=0$. For the following statements, if TRUE, give reasons; if FALSE, give a counterexample.
a) If $\lim _{x \rightarrow 0} \frac{f(x)}{x}$ exists, then $f(0)=0$.
b) If $\lim _{x \rightarrow 0} \frac{f(x)+f(-x)}{x}$ exists, then $f(0)=0$.
c) If $\lim _{x \rightarrow 0} \frac{f(x)}{x}$ exists, then $f^{\prime}(0)$ exists.
d) If $\lim _{x \rightarrow 0} \frac{f(x)-f(-x)}{x}$ exists, then $f^{\prime}(0)$ exists.

