Norwegian University of Science and Technology Department of Mathematical Sciences MA1101 Basic Calculus I Fall 2021

Exercise set 7: Solutions

1 Show that the functions f below are bijective, and calculate the inverse functions f^{-1} . Specify the domains and ranges of f^{-1} .

a)
$$f: [1, \infty) \to \mathbb{R}, \quad x \mapsto \sqrt{x-1}$$

b) $f: (-\infty, -1) \cup (-1, \infty) \to \mathbb{R}, \quad x \mapsto \frac{x}{1+x}$

Solution.

In this two questions, we denote $\mathscr{D}(f)$ and $\mathscr{R}(f)$ as the domain and range for a function f.

a)

 $f(x) = \sqrt{x-1}.$ $f(x_1) = f(x_2) \iff \sqrt{x_1 - 1} = \sqrt{x_2 - 1}, \quad (x_1, x_2 \ge 1)$ $\iff x_1 - 1 = x_2 - 1 = 0$ $\iff x_1 = x_2.$

Thus f is bijective. Let $y = f^{-1}(x)$.

Then $x = f(y) = \sqrt{y-1}$, and $y = 1 + x^2$. Thus $f^{-1}(x) = 1 + x^2$, $(x \ge 0)$. $\mathscr{D}(f^{-1}) = \mathscr{R}(f) = [0, \infty), \, \mathscr{R}(f^{-1}) = \mathscr{D}(f) = [1, \infty).$

b)

$$f(x) = \frac{x}{1+x}.$$

If $f(x_1) = f(x_2)$, then $\frac{x_1}{1+x_1} = \frac{x_2}{1+x_2}$. Hence $x_1(1+x_2) = x_2(1+x_1)$, and on simplification, $x_1 = x_2$. Thus, f is bijective.

Let
$$y = f^{-1}(x)$$
. Then $x = f(y) = \frac{y}{1+y}$ and $x(1+y) = y$. Thus $y = \frac{x}{1-x} = f^{-1}(x)$.
 $\mathscr{D}(f^{-1}) = \mathscr{R}(f) = (-\infty, 1) \cup (1, \infty), \ \mathscr{R}(f^{-1}) = \mathscr{D}(f) = (-\infty, -1) \cup (-1, \infty).$

2 Differentiate the given functions below and simplify your answers if possible. Also state when the domain of the derivatives.

a) $f: \mathbb{R} \to \mathbb{R}, \quad x \mapsto e^{(e^x)}$ **b)** $f: \mathbb{R} \to \mathbb{R}, \quad x \mapsto \frac{e^x}{1 + e^x}$ **c)** $f: \mathbb{R} \to \mathbb{R}, \quad x \mapsto 2^{(x^2 - 3x + 8)}$ *Hint: Use chain rule of differentiation.*

Solution.

a) $f(x) = e^{(e^x)}, f'(x) = e^{(e^x)}e^x = e^{x+e^x}, x \in \mathbb{R}.$ b) $f(x) = \frac{e^x}{1+e^x} = 1 - \frac{1}{1+e^x}, f'(x) = \frac{e^x}{(1+e^x)^2}, x \in \mathbb{R}.$ c) $f(x) = 2^{(x^2-3x+8)}, f'(x) = (2x-3)(\ln 2)2^{(x^2-3x+8)}, x \in \mathbb{R}.$

3 Find the value of x when

$$2^{x^2 - 3} = 4^x.$$

Solution.

$$2^{x^2-3} = 4^x = 2^{2x} \Longrightarrow x^2 - 3 = 2x.$$

 $x^2 - 2x - 3 = 0 \Longrightarrow (x - 3)(x + 1) = 0.$ Hence, $x = -1$ or 3.

4 Let a function given by $f(x) = Ae^x \cos(x) + Be^x \sin(x)$, where $x \in \mathbb{R}$, and A, B are real constants. Find $\frac{\mathrm{d}}{\mathrm{d}x}f(x)$.

Solution.

$$\frac{\mathrm{d}}{\mathrm{d}x}f(x) = Ae^x \cos(x) - Ae^x \sin(x) + Be^x \sin(x) + Be^x \cos(x)$$
$$= (A+B)e^x \cos(x) + (B-A)e^x \sin(x).$$

5 Find
$$\frac{\mathrm{d}}{\mathrm{d}x} \left(Ae^{ax} \cos(bx) + Be^{ax} \sin(bx) \right)$$
 and use this to calculate the indefinite integrals $\int e^{ax} \cos(bx) \,\mathrm{d}x$ and $\int e^{ax} \sin(bx) \,\mathrm{d}x$.

Solution.

$$\frac{\mathrm{d}}{\mathrm{d}x} \Big(Ae^{ax} \cos(bx) + Be^{ax} \sin(bx) \Big)$$

= $Aae^{ax} \cos(bx) - Abe^{ax} \sin(bx) + Bae^{ax} \sin(bx) + Bbe^{ax} \cos(bx)$
= $(Aa + Bb)e^{ax} \cos(bx) + (Ba - Ab)e^{ax} \sin(bx).$

If Aa + Bb = 1 and Ba - Ab = 0, then $A = \frac{a}{a^2 + b^2}$ and $B = \frac{b}{a^2 + b^2}$. Thus

$$\int e^{ax} \cos(bx) \, dx = \frac{1}{a^2 + b^2} \Big(a e^{ax} \cos(bx) + b e^{ax} \sin(bx) \Big) + C.$$

If Aa + Bb = 0 and Ba - Ab = 1, then $A = \frac{-b}{a^2 + b^2}$ and $B = \frac{a}{a^2 + b^2}$. Thus $\int e^{ax} \sin(bx) dx = \frac{1}{a^2 + b^2} \left(ae^{ax} \sin(bx) - be^{ax} \cos(bx)\right) + C$

$$\int e^{-\sin(6x) - 4x} = a^2 + b^2 \left(a e^{-\sin(6x)} - b e^{-\cos(6x)} \right) + c.$$

6 If functions f and g have respective inverse f^{-1} and g^{-1} , show that the composite function $f \circ g$ has inverse $(f \circ g)^{-1} = g^{-1} \circ f^{-1}$.

Solution.

If $y = (f \circ g)^{-1}(x)$, then $x = f \circ g(y) = f(g(y))$. Thus $g(y) = f^{-1}(x)$ and $y = g^{-1}(f^{-1}(x)) = g^{-1} \circ f^{-1}(x)$. That is, $(f \circ g)^{-1} = g^{-1} \circ f^{-1}$.

7 Find the sum of the given series below, or show that the series diverge.

a)
$$\sum_{k=0}^{\infty} \frac{2^{k+3}}{e^{k-3}}$$

b)
$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)} = \frac{1}{1\times 3} + \frac{1}{3\times 5} + \frac{1}{5\times 7} + \cdots$$

Hint: Use that $\frac{1}{(2n-1)(2n+1)} = \frac{1}{2} \left(\frac{1}{2n-1} - \frac{1}{2n+1} \right).$
c)
$$\sum_{n=1}^{\infty} \frac{1}{2n-1}$$

Solution.

a)

$$\sum_{k=0}^{\infty} \frac{2^{k+3}}{e^{k-3}} = 8e^3 \sum_{k=0}^{\infty} \left(\frac{2}{e}\right)^k = \frac{8e^3}{1-\frac{2}{e}} = \frac{8e^4}{e-2}.$$

b)

Let

$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)} = \frac{1}{1\times 3} + \frac{1}{3\times 5} + \frac{1}{5\times 7} + \cdots$$

Since

$$\frac{1}{(2n-1)(2n+1)} = \frac{1}{2} \Big(\frac{1}{2n-1} - \frac{1}{2n+1} \Big),$$

the partial sum is

$$s_n = \frac{1}{2} \left(1 - \frac{1}{3} \right) + \frac{1}{2} \left(\frac{1}{3} - \frac{1}{5} \right) + \dots + \frac{1}{2} \left(\frac{1}{2n-3} - \frac{1}{2n-1} \right) + \frac{1}{2} \left(\frac{1}{2n-1} - \frac{1}{2n+1} \right)$$
$$= \frac{1}{2} \left(1 - \frac{1}{2n+1} \right).$$

Hence,

$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)} = \lim_{n \to \infty} s_n = \frac{1}{2}.$$

c)

Since $\frac{1}{2n-1} > \frac{1}{2n} = \frac{1}{2} \cdot \frac{1}{n}$, therefore the partial sums of the given series exceed half those of the divergent harmonic series $\sum_{n=1}^{\infty} \frac{1}{2n}$. Hence the given series diverges to infinity.

8 Find the required Taylor series representations of the functions below.
 a) f(x) = e^{-2x} about -1
 b) f(x) = cos²(x) about π/8

Solution.

a)

Let t = x + 1, so x = t - 1. We have

$$f(x) = e^{-2x} = e^{-2(t-1)} = e^2 \sum_{n=0}^{\infty} \frac{(-2)^n t^n}{n!} = e^2 \sum_{n=0}^{\infty} \frac{(-1)^n 2^n (x+1)^n}{n!} \quad \text{(for all } x\text{)}.$$

b)

let $y = x - \frac{\pi}{8}$; then $x = y + \frac{\pi}{8}$. Thus,

$$\begin{aligned} \cos^{2}(x) &= \cos^{2}\left(y + \frac{\pi}{8}\right) = \frac{1}{2} \left[1 + \cos\left(2y + \frac{\pi}{4}\right)\right] \\ &= \frac{1}{2} \left[1 + \frac{1}{\sqrt{2}}\cos(2y) - \frac{1}{\sqrt{2}}\sin(2y)\right] \\ &= \frac{1}{2} + \frac{1}{2\sqrt{2}} \left[1 - \frac{(2y)^{2}}{2!} + \frac{(2y)^{4}}{4!} - \cdots\right] - \frac{1}{2\sqrt{2}} \left[2y - \frac{(2y)^{3}}{3!} + \frac{(2y)^{5}}{5!} - \cdots\right] \\ &= \frac{1}{2} + \frac{1}{2\sqrt{2}} \left[1 - 2y - \frac{(2y)^{2}}{2!} + \frac{(2y)^{3}}{3!} + \frac{(2y)^{4}}{4!} - \frac{(2y)^{5}}{5!} - \cdots\right] \\ &= \frac{1}{2} + \frac{1}{2\sqrt{2}} \left[1 - 2\left(x - \frac{\pi}{8}\right) - \frac{2^{2}}{2!}\left(x - \frac{\pi}{8}\right)^{2} + \frac{2^{3}}{3!}\left(x - \frac{\pi}{8}\right)^{3} + \frac{2^{4}}{4!}\left(x - \frac{\pi}{8}\right)^{4} \\ &- \frac{2^{5}}{5!}\left(x - \frac{\pi}{8}\right)^{5} - \cdots\right] \\ &= \frac{1}{2} + \frac{1}{2\sqrt{2}} + \frac{1}{2\sqrt{2}}\sum_{n=1}^{\infty} (-1)^{n} \left[\frac{2^{2n-1}}{(2n-1)!}\left(x - \frac{\pi}{8}\right)^{2n-1} + \frac{2^{2n}}{(2n)!}\left(x - \frac{\pi}{8}\right)^{2n}\right] \quad (\text{for all } x). \end{aligned}$$

9 Decide whether the given statements are TRUE or FALSE. If it is TRUE, prove it. If it is FALSE, give a counterexample.

Solution.

a)

FALSE. A counterexample is
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{2^n}$$
. Clearly,
 $\sum_{n=1}^{\infty} \frac{(-1)^n}{2^n} = \lim_{n \to \infty} \frac{-\frac{1}{2} \left[1 - \left(-\frac{1}{2} \right)^n \right]}{1 - \left(-\frac{1}{2} \right)} = -\frac{1}{3}$

is convergent. However, $\sum_{n=1}^{\infty} \frac{2^n}{(-1)^n}$ is oscillating to $-\infty$ and ∞ as $n \to \infty$. So it diverges, but not only diverges to infinity.

b)

TRUE. We have

$$s_n = a_1 + a_2 + a_3 + \dots + a_n \ge c + c + c + \dots + c = nc,$$

and $nc \to \infty$ as $n \to \infty$.

c)

TRUE. Since
$$\sum_{n=1}^{\infty} a_n$$
 converges, therefore $\lim_{n \to \infty} a_n = 0$.

Thus there exists N such that $0 < a_n \leq 1$ for $n \geq N$. Thus $0 < a_n^2 \leq a_n$ for $n \geq N$.

If
$$S_n = \sum_{k=N}^n a_k^2$$
 and $s_n = \sum_{k=N}^n a_k$, then $\{S_n\}$ is increasing and bounded above:
 $S_n \le s_n \le \sum_{k=1}^\infty a_k < \infty$.
Thus, $\sum_{k=1}^\infty a_k^2$ converges, and so $\sum_{k=1}^\infty a_k^2$ converges.

Thus $\sum_{k=N}^{\infty} a_k^2$ converges, and so $\sum_{k=1}^{\infty} a_k^2$ converges.