Norwegian University of Science and Technology
Department of Mathematical
Sciences

MA1101 Basic Calculus I
 Fall 2021

Exercise set 7: Solutions

1 Show that the functions f below are bijective, and calculate the inverse functions f^{-1}. Specify the domains and ranges of f^{-1}.
a) $f:[1, \infty) \rightarrow \mathbb{R}, \quad x \mapsto \sqrt{x-1}$
b) $f:(-\infty,-1) \cup(-1, \infty) \rightarrow \mathbb{R}, \quad x \mapsto \frac{x}{1+x}$

Solution.

In this two questions, we denote $\mathscr{D}(f)$ and $\mathscr{R}(f)$ as the domain and range for a function f.
a)
$f(x)=\sqrt{x-1}$.

$$
\begin{aligned}
f\left(x_{1}\right)=f\left(x_{2}\right) & \Longleftrightarrow \sqrt{x_{1}-1}=\sqrt{x_{2}-1}, \quad\left(x_{1}, x_{2} \geq 1\right) \\
& \Longleftrightarrow x_{1}-1=x_{2}-1=0 \\
& \Longleftrightarrow x_{1}=x_{2} .
\end{aligned}
$$

Thus f is bijective. Let $y=f^{-1}(x)$.
Then $x=f(y)=\sqrt{y-1}$, and $y=1+x^{2}$. Thus $f^{-1}(x)=1+x^{2},(x \geq 0)$.
$\mathscr{D}\left(f^{-1}\right)=\mathscr{R}(f)=[0, \infty), \mathscr{R}\left(f^{-1}\right)=\mathscr{D}(f)=[1, \infty)$.
b)
$f(x)=\frac{x}{1+x}$.
If $f\left(x_{1}\right)=f\left(x_{2}\right)$, then $\frac{x_{1}}{1+x_{1}}=\frac{x_{2}}{1+x_{2}}$. Hence $x_{1}\left(1+x_{2}\right)=x_{2}\left(1+x_{1}\right)$, and on simplification, $x_{1}=x_{2}$. Thus, f is bijective.

Let $y=f^{-1}(x)$. Then $x=f(y)=\frac{y}{1+y}$ and $x(1+y)=y$. Thus $y=\frac{x}{1-x}=f^{-1}(x)$.
$\mathscr{D}\left(f^{-1}\right)=\mathscr{R}(f)=(-\infty, 1) \cup(1, \infty), \mathscr{R}\left(f^{-1}\right)=\mathscr{D}(f)=(-\infty,-1) \cup(-1, \infty)$.

2 Differentiate the given functions below and simplify your answers if possible. Also state when the domain of the derivatives.
a) $f: \mathbb{R} \rightarrow \mathbb{R}, \quad x \mapsto e^{\left(e^{x}\right)}$
b) $f: \mathbb{R} \rightarrow \mathbb{R}, \quad x \mapsto \frac{e^{x}}{1+e^{x}}$
c) $f: \mathbb{R} \rightarrow \mathbb{R}, \quad x \mapsto 2^{\left(x^{2}-3 x+8\right)}$

Hint: Use chain rule of differentiation.

Solution.

a) $f(x)=e^{\left(e^{x}\right)}, f^{\prime}(x)=e^{\left(e^{x}\right)} e^{x}=e^{x+e^{x}}, x \in \mathbb{R}$.
b) $f(x)=\frac{e^{x}}{1+e^{x}}=1-\frac{1}{1+e^{x}}, f^{\prime}(x)=\frac{e^{x}}{\left(1+e^{x}\right)^{2}}, x \in \mathbb{R}$.
c) $f(x)=2^{\left(x^{2}-3 x+8\right)}, f^{\prime}(x)=(2 x-3)(\ln 2) 2^{\left(x^{2}-3 x+8\right)}, x \in \mathbb{R}$.

3 Find the value of x when

$$
2^{x^{2}-3}=4^{x}
$$

Solution.

$$
\begin{aligned}
& 2^{x^{2}-3}=4^{x}=2^{2 x} \Longrightarrow x^{2}-3=2 x . \\
& x^{2}-2 x-3=0 \Longrightarrow(x-3)(x+1)=0 . \text { Hence, } x=-1 \text { or } 3 .
\end{aligned}
$$

4 Let a function given by $f(x)=A e^{x} \cos (x)+B e^{x} \sin (x)$, where $x \in \mathbb{R}$, and A, B are real constants. Find $\frac{\mathrm{d}}{\mathrm{d} x} f(x)$.

Solution.

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} f(x) & =A e^{x} \cos (x)-A e^{x} \sin (x)+B e^{x} \sin (x)+B e^{x} \cos (x) \\
& =(A+B) e^{x} \cos (x)+(B-A) e^{x} \sin (x)
\end{aligned}
$$

5 Find $\frac{\mathrm{d}}{\mathrm{d} x}\left(A e^{a x} \cos (b x)+B e^{a x} \sin (b x)\right)$ and use this to calculate the indefinite integrals

$$
\int e^{a x} \cos (b x) \mathrm{d} x \quad \text { and } \quad \int e^{a x} \sin (b x) \mathrm{d} x
$$

Solution.

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} x}\left(A e^{a x} \cos (b x)+B e^{a x} \sin (b x)\right) \\
= & A a e^{a x} \cos (b x)-A b e^{a x} \sin (b x)+B a e^{a x} \sin (b x)+B b e^{a x} \cos (b x) \\
= & (A a+B b) e^{a x} \cos (b x)+(B a-A b) e^{a x} \sin (b x) .
\end{aligned}
$$

If $A a+B b=1$ and $B a-A b=0$, then $A=\frac{a}{a^{2}+b^{2}}$ and $B=\frac{b}{a^{2}+b^{2}}$. Thus

$$
\int e^{a x} \cos (b x) \mathrm{d} x=\frac{1}{a^{2}+b^{2}}\left(a e^{a x} \cos (b x)+b e^{a x} \sin (b x)\right)+C .
$$

If $A a+B b=0$ and $B a-A b=1$, then $A=\frac{-b}{a^{2}+b^{2}}$ and $B=\frac{a}{a^{2}+b^{2}}$. Thus

$$
\int e^{a x} \sin (b x) \mathrm{d} x=\frac{1}{a^{2}+b^{2}}\left(a e^{a x} \sin (b x)-b e^{a x} \cos (b x)\right)+C .
$$

6 If functions f and g have respective inverse f^{-1} and g^{-1}, show that the composite function $f \circ g$ has inverse $(f \circ g)^{-1}=g^{-1} \circ f^{-1}$.

Solution.

If $y=(f \circ g)^{-1}(x)$, then $x=f \circ g(y)=f(g(y))$. Thus $g(y)=f^{-1}(x)$ and $y=$ $g^{-1}\left(f^{-1}(x)\right)=g^{-1} \circ f^{-1}(x)$. That is, $(f \circ g)^{-1}=g^{-1} \circ f^{-1}$.

7 Find the sum of the given series below, or show that the series diverge.
a) $\sum_{k=0}^{\infty} \frac{2^{k+3}}{e^{k-3}}$
b) $\sum_{n=1}^{\infty} \frac{1}{(2 n-1)(2 n+1)}=\frac{1}{1 \times 3}+\frac{1}{3 \times 5}+\frac{1}{5 \times 7}+\cdots$

Hint: Use that $\frac{1}{(2 n-1)(2 n+1)}=\frac{1}{2}\left(\frac{1}{2 n-1}-\frac{1}{2 n+1}\right)$.
c) $\sum_{n=1}^{\infty} \frac{1}{2 n-1}$

Solution.

a)

$$
\sum_{k=0}^{\infty} \frac{2^{k+3}}{e^{k-3}}=8 e^{3} \sum_{k=0}^{\infty}\left(\frac{2}{e}\right)^{k}=\frac{8 e^{3}}{1-\frac{2}{e}}=\frac{8 e^{4}}{e-2}
$$

b)

Let

$$
\sum_{n=1}^{\infty} \frac{1}{(2 n-1)(2 n+1)}=\frac{1}{1 \times 3}+\frac{1}{3 \times 5}+\frac{1}{5 \times 7}+\cdots
$$

Since

$$
\frac{1}{(2 n-1)(2 n+1)}=\frac{1}{2}\left(\frac{1}{2 n-1}-\frac{1}{2 n+1}\right)
$$

the partial sum is

$$
\begin{aligned}
s_{n} & =\frac{1}{2}\left(1-\frac{1}{3}\right)+\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}\right)+\cdots+\frac{1}{2}\left(\frac{1}{2 n-3}-\frac{1}{2 n-1}\right)+\frac{1}{2}\left(\frac{1}{2 n-1}-\frac{1}{2 n+1}\right) \\
& =\frac{1}{2}\left(1-\frac{1}{2 n+1}\right) .
\end{aligned}
$$

Hence,

$$
\sum_{n=1}^{\infty} \frac{1}{(2 n-1)(2 n+1)}=\lim _{n \rightarrow \infty} s_{n}=\frac{1}{2}
$$

c)

Since $\frac{1}{2 n-1}>\frac{1}{2 n}=\frac{1}{2} \cdot \frac{1}{n}$, therefore the partial sums of the given series exceed half those of the divergent harmonic series $\sum_{n=1}^{\infty} \frac{1}{2 n}$. Hence the given series diverges to infinity.

8 Find the required Taylor series representations of the functions below.
a) $f(x)=e^{-2 x}$ about -1
b) $f(x)=\cos ^{2}(x)$ about $\frac{\pi}{8}$

Solution.

a)

Let $t=x+1$, so $x=t-1$. We have

$$
f(x)=e^{-2 x}=e^{-2(t-1)}=e^{2} \sum_{n=0}^{\infty} \frac{(-2)^{n} t^{n}}{n!}=e^{2} \sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{n}(x+1)^{n}}{n!} \quad(\text { for all } x)
$$

b)
let $y=x-\frac{\pi}{8}$; then $x=y+\frac{\pi}{8}$. Thus,

$$
\begin{aligned}
& \cos ^{2}(x)=\cos ^{2}\left(y+\frac{\pi}{8}\right)=\frac{1}{2}\left[1+\cos \left(2 y+\frac{\pi}{4}\right)\right] \\
= & \frac{1}{2}\left[1+\frac{1}{\sqrt{2}} \cos (2 y)-\frac{1}{\sqrt{2}} \sin (2 y)\right] \\
= & \frac{1}{2}+\frac{1}{2 \sqrt{2}}\left[1-\frac{(2 y)^{2}}{2!}+\frac{(2 y)^{4}}{4!}-\cdots\right]-\frac{1}{2 \sqrt{2}}\left[2 y-\frac{(2 y)^{3}}{3!}+\frac{(2 y)^{5}}{5!}-\cdots\right] \\
= & \frac{1}{2}+\frac{1}{2 \sqrt{2}}\left[1-2 y-\frac{(2 y)^{2}}{2!}+\frac{(2 y)^{3}}{3!}+\frac{(2 y)^{4}}{4!}-\frac{(2 y)^{5}}{5!}-\cdots\right] \\
= & \frac{1}{2}+\frac{1}{2 \sqrt{2}}\left[1-2\left(x-\frac{\pi}{8}\right)-\frac{2^{2}}{2!}\left(x-\frac{\pi}{8}\right)^{2}+\frac{2^{3}}{3!}\left(x-\frac{\pi}{8}\right)^{3}+\frac{2^{4}}{4!}\left(x-\frac{\pi}{8}\right)^{4}\right. \\
& \left.-\frac{2^{5}}{5!}\left(x-\frac{\pi}{8}\right)^{5}-\cdots\right] \\
= & \left.\frac{1}{2}+\frac{1}{2 \sqrt{2}}+\frac{1}{2 \sqrt{2}} \sum_{n=1}^{\infty}(-1)^{n}\left[\frac{2^{2 n-1}}{(2 n-1)!}\left(x-\frac{\pi}{8}\right)^{2 n-1}+\frac{2^{2 n}}{(2 n)!}\left(x-\frac{\pi}{8}\right)^{2 n}\right] \quad \text { (for all } x\right) .
\end{aligned}
$$

9 Decide whether the given statements are TRUE or FALSE. If it is TRUE, prove it. If it is FALSE, give a counterexample.
a) If $\sum_{n=1}^{\infty} a_{n}$ converges, then $\sum_{n=1}^{\infty} \frac{1}{a_{n}}$ diverges to infinity.
b) If $a_{n} \geq c>0$ for every n, then $\sum_{n=1}^{\infty} a_{n}$ diverges to infinity.
c) If $a_{n}>0$ and $\sum_{n=1}^{\infty} a_{n}$ converges, then $\sum_{n=1}^{\infty}\left(a_{n}\right)^{2}$ converges.

Solution.

a)

FALSE. A counterexample is $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{2^{n}}$. Clearly,

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{2^{n}}=\lim _{n \rightarrow \infty} \frac{-\frac{1}{2}\left[1-\left(-\frac{1}{2}\right)^{n}\right]}{1-\left(-\frac{1}{2}\right)}=-\frac{1}{3}
$$

is convergent. However, $\sum_{n=1}^{\infty} \frac{2^{n}}{(-1)^{n}}$ is oscillating to $-\infty$ and ∞ as $n \rightarrow \infty$. So it diverges, but not only diverges to infinity.
b)

TRUE. We have

$$
s_{n}=a_{1}+a_{2}+a_{3}+\cdots+a_{n} \geq c+c+c+\cdots+c=n c,
$$

and $n c \rightarrow \infty$ as $n \rightarrow \infty$.
c)

TRUE. Since $\sum_{n=1}^{\infty} a_{n}$ converges, therefore $\lim _{n \rightarrow \infty} a_{n}=0$.
Thus there exists N such that $0<a_{n} \leq 1$ for $n \geq N$. Thus $0<a_{n}^{2} \leq a_{n}$ for $n \geq N$.
If $S_{n}=\sum_{k=N}^{n} a_{k}^{2}$ and $s_{n}=\sum_{k=N}^{n} a_{k}$, then $\left\{S_{n}\right\}$ is increasing and bounded above:

$$
S_{n} \leq s_{n} \leq \sum_{k=1}^{\infty} a_{k}<\infty
$$

Thus $\sum_{k=N}^{\infty} a_{k}^{2}$ converges, and so $\sum_{k=1}^{\infty} a_{k}^{2}$ converges.

