MA1101 Basic Calculus I
 Fall 2021

Exercise set 6: Solutions
Norwegian University of Science and Technology
Department of Mathematical
Sciences

1 Classify the critical points of the function

$$
f: \mathbb{R} \rightarrow \mathbb{R}, \quad x \mapsto x\left(x^{2}-1\right)^{2} .
$$

(That is, decide if they are local/global maxim/minima or not.)

Solution.

$$
\begin{aligned}
f(x) & =x\left(x^{2}-1\right)^{2}, \\
f^{\prime}(x) & =\left(x^{2}-1\right)^{2}+2 x\left(x^{2}-1\right) 2 x \\
& =\left(x^{2}-1\right)\left(x^{2}-1+4 x^{2}\right) \\
& =\left(x^{2}-1\right)\left(5 x^{2}-1\right) \\
& =(x-1)(x+1)(\sqrt{5} x-1)(\sqrt{5} x+1) .
\end{aligned}
$$

$f(\pm 1)=0, f\left(\pm \frac{1}{\sqrt{5}}\right)= \pm \frac{16}{25 \sqrt{5}}$.

Thus,

$$
\begin{array}{r}
-1, \text { local maximum point; }-\frac{1}{\sqrt{5}} \text { local minimum point; } \\
+\frac{1}{\sqrt{5}} \text { local maximum point; } 1, \text { local minimum point; } \\
\text { There are no global maximum or minimum point. }
\end{array}
$$

2 Sketch the graph of the function

$$
f: \mathbb{R} \backslash\{ \pm 1\} \rightarrow \mathbb{R}, \quad x \mapsto \frac{x^{3}}{x^{2}-1} .
$$

Make a table with the sign of f^{\prime} and $f^{\prime \prime}$, and the corresponding behavior of f. Describe the asymptotes of f.

Solution.

$$
f(x)=\frac{x^{3}}{x^{2}-1}, \quad f^{\prime}(x)=\frac{x^{2}\left(x^{2}-3\right)}{\left(x^{2}-1\right)^{2}}, \quad f^{\prime \prime}(x)=\frac{2 x\left(x^{2}+3\right)}{\left(x^{2}-1\right)^{3}} .
$$

From f : Intercept: $(0,0)$. Asymptotes: $x= \pm 1$ (vertical), $y=x$ (oblique). Symmetry: odd. Other points: $\left(\pm \sqrt{3}, \pm \frac{3 \sqrt{3}}{2}\right)$.

For computing the oblique asymptotes: We may write $f(x)=x+\frac{x}{x^{2}-1}$. When x tends to $\pm \infty$, it behaves like the $y=x$.

From $f^{\prime}(x)$: Critical point: $x=0, \pm \sqrt{3}$.

From $f^{\prime \prime}(x): f^{\prime \prime}(x)=0$ at $x=0$.

3 All 80 rooms in a motel will be rented each night if the manager charges 40 NOK or less per room. If he charges $(40+x)$ NOK per room, then $2 x$ rooms will remain vacant. If each rented room costs the manager 10 NOK per day and each unrented room 2 NOK per day in overhead, how much should the manager charge per room to maximize his daily profit?

Solution.

If the manager charges $(40+x)$ NOK per room, then $(80-2 x)$ rooms will be rented.
The total income will be $(80-2 x)(40+x)$ NOK and the total cost will be $(80-2 x)(10)+$ $(2 x)(2)$ NOK. Therefore, the profit is

$$
\begin{aligned}
P(x) & =(80-2 x)(40+x)-[(80-2 x)(10)+(2 x)(2)] \\
& =2400+16 x-2 x^{2}, \quad \text { for } \quad x>0 .
\end{aligned}
$$

If $P^{\prime}(x)=16-4 x=0$, then $x=4$. Since $P^{\prime \prime}(x)=-4<0, P$ must have a maximum value at $x=4$. Therefore, the manager should charge 44 NOK per room.

4 Find the linearization of the given function about the given point.

$$
f: \mathbb{R} \rightarrow \mathbb{R}, \quad x \mapsto \sqrt{3+x^{2}} \quad \text { about } \quad x=1 .
$$

Solution.

$$
f(1)=2, \quad f^{\prime}(x)=\frac{1}{2}\left(3+x^{2}\right)^{-\frac{1}{2}} \cdot 2 x=x\left(3+x^{2}\right)^{-\frac{1}{2}}, \quad f^{\prime}(1)=\frac{1}{2} .
$$

Thus, the linearization of f about $x=1$ is

$$
L(x)=2+\frac{1}{2}(x-1)=\frac{x}{2}+\frac{3}{2} .
$$

5 Let $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$ be a polynomial. Show that the Taylor series around $x_{0}=0$ of $p(x)$ is equal to $p(x)$.

Solution.

$$
\begin{aligned}
& p^{(1)}(x)=a_{n} n x^{n-1}+a_{n-1}(n-1) x^{n-2}+\cdots+a_{2} 2 x+a_{1} \\
& p^{(2)}(x)=a_{n} n(n-1) x^{n-2}+a_{n-1}(n-1)(n-2) x^{n-3}+\cdots+a_{3} \cdot 3 \cdot 2 x+2 a_{2}
\end{aligned}
$$

$$
\begin{aligned}
p^{(n)}(x) & =a_{n} n(n-1) \cdots(n-(n-1))=a_{n} n!, \\
p^{(n+1)}(x) & =0,
\end{aligned}
$$

Then we get

$$
\begin{aligned}
& p^{(1)}(0)=1!a_{1}, \quad p^{(2)}(0)=2!a_{2}, \quad p^{(3)}(0)=3!a_{3}, \quad \cdots, \quad p^{(n)}(0)=n!a_{n} \\
& p^{(n+1)}(0)=0, \quad p^{(n+2)}(0)=0, \quad \cdots
\end{aligned}
$$

By Taylor's expansion, we get

$$
\begin{aligned}
p(x) & =p(0)+\frac{p^{\prime}(0)}{1!}(x-0)+\frac{p^{\prime \prime}(0)}{2!}(x-0)^{2}+\cdots+\frac{p^{(n)}(0)}{n!}(x-0)^{n}+\cdots \\
& =a_{0}+\frac{1!a_{1}}{1!} x+\frac{2!a_{2}}{2!} x^{2}+\frac{3!a_{3}}{3!} x^{3}+\cdots \frac{n!a_{n}}{n!} x^{n}+0+0+\cdots \\
& =a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0} .
\end{aligned}
$$

6 Find the fourth order Taylor polynomial of the function $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto e^{x}$ at the point $x_{0}=\ln 2$.

Solution.

$$
f^{(k)}(x)=e^{x} ; \quad f^{(k)}\left(x_{0}\right)=e^{\ln 2}
$$

Thus,

$$
\begin{aligned}
P_{4}(x) & =e^{\ln 2}+e^{\ln 2}(x-\ln 2)+\frac{e^{\ln 2}}{2!}(x-\ln 2)^{2}+\frac{e^{\ln 2}}{3!}(x-\ln 2)^{3}+\frac{e^{\ln 2}}{4!}(x-\ln 2)^{4} \\
& =2+2(x-\ln 2)+(x-\ln 2)^{2}+\frac{1}{3}(x-\ln 2)^{3}+\frac{1}{12}(x-\ln 2)^{4}
\end{aligned}
$$

7 Calculate
a) $\lim _{x \rightarrow \infty} \frac{3 x+\ln (x)+2 x^{3}}{x^{3}}$.
b) $\lim _{x \rightarrow 0} \frac{\tan (x)-x}{x^{2} \sin (x)}$.

Solution.

a) Using L'Hôpital's rule, we have

$$
\lim _{x \rightarrow \infty} \frac{3 x+\ln (x)+2 x^{3}}{x^{3}}=\lim _{x \rightarrow \infty} \frac{3+\frac{1}{x}+6 x^{2}}{3 x^{2}}=2 .
$$

b)

Method 1: Using L'Hôpital's rule, we have

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\tan (x)-x}{x^{2} \sin (x)}=\lim _{x \rightarrow 0} \frac{\sec ^{2}(x)-1}{2 x \sin (x)+x^{2} \cos (x)}=\lim _{x \rightarrow 0} \frac{\frac{1}{\cos ^{2}(x)}-1}{2 x \sin (x)+x^{2} \cos (x)} \\
= & \lim _{x \rightarrow 0} \frac{\sin ^{2}(x)}{x \cos ^{2}(x)[2 \sin (x)+x \cos (x)]}=\lim _{x \rightarrow 0} \frac{\sin (x)}{2 \sin (x)+x \cos (x)} \\
= & \lim _{x \rightarrow 0} \frac{\cos (x)}{2 \cos (x)+\cos (x)-x \sin (x)}=\frac{1}{3} .
\end{aligned}
$$

Method 2: Using Taylor's expansion, we have

$$
\tan (x)=x+\frac{1}{3} x^{3}+o\left(x^{3}\right)
$$

Thus,

$$
\lim _{x \rightarrow 0} \frac{\tan (x)-x}{x^{2} \sin (x)}=\lim _{x \rightarrow 0} \frac{\frac{1}{3} x^{3}+o\left(x^{3}\right)}{x^{2} \sin (x)}=\frac{1}{3}
$$

8 Calculate
a) $\lim _{x \rightarrow 0} \frac{\sin (a x)}{\sin (b x)}$, for $a, b>0$.
b) $\lim _{h \rightarrow 0} \frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}$, given that f is twice derivable.

Solution.

a) Method 1: Using L'Hôpital's rule, we have

$$
\lim _{x \rightarrow 0} \frac{\sin (a x)}{\sin (b x)}=\lim _{x \rightarrow 0} \frac{a \cos (a x)}{b \cos (b x)}=\frac{a}{b}
$$

Method 2:

$$
\lim _{x \rightarrow 0} \frac{\sin (a x)}{\sin (b x)}=\lim _{x \rightarrow 0} \frac{\frac{\sin (a x)}{a x} \cdot a x}{\frac{\sin (b x)}{b x} \cdot b x}=\frac{a}{b} \cdot \frac{1}{1}=\frac{a}{b}
$$

b)

Method 1: Using L'Hôpital's rule twice, we get

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}=\lim _{h \rightarrow 0} \frac{f^{\prime}(x+h)-f^{\prime}(x-h)}{2 h} \\
= & \lim _{h \rightarrow 0} \frac{f^{\prime \prime}(x+h)+f^{\prime \prime}(x-h)}{2}=\frac{2 f^{\prime \prime}(x)}{2}=f^{\prime \prime}(x) .
\end{aligned}
$$

Method 2: By Taylor's expansion, we have

$$
\begin{aligned}
f(x+h) & =f(x)+f^{\prime}(x)(x+h-x)+\frac{f^{\prime \prime}(x)}{2}(x+h-x)^{2}+o\left((x+h-x)^{2}\right) \\
& =f(x)+f^{\prime}(x) h+\frac{f^{\prime \prime}(x)}{2} h^{2}+o\left(h^{2}\right) ; \\
f(x-h) & =f(x)+f^{\prime}(x)(x-h-x)+\frac{f^{\prime \prime}(x)}{2}(x-h-x)^{2}+o\left((x-h-x)^{2}\right) \\
& =f(x)-f^{\prime}(x) h+\frac{f^{\prime \prime}(x)}{2} h^{2}+o\left(h^{2}\right) .
\end{aligned}
$$

Then we have

$$
f(x+h)+f(x-h)=2 f(x)+f^{\prime \prime}(x) h^{2}+o\left(h^{2}\right)
$$

Thus, we get

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}=\lim _{h \rightarrow 0} \frac{2 f(x)+f^{\prime \prime}(x) h^{2}+o\left(h^{2}\right)-2 f(x)}{h^{2}}=f^{\prime \prime}(x)
$$

9 Prove Darboux's theorem: Let I be a closed interval, $f: I \rightarrow \mathbb{R}$ a real-valued differentiable function. Then f^{\prime} has the intermediate value property: If a and b are points in I with $a<b$, then for every y between $f^{\prime}(a)$ and $f^{\prime}(b)$, there exists an x in $[a, b]$ such that $f^{\prime}(x)=y$.
Hint: Prove it according to the following steps:

1. Consider the particular case, that is, y equals to $f^{\prime}(a)$ or $f^{\prime}(b)$;
2. Consider the general case. Without loss of generality, assume $f^{\prime}(b)<y<f^{\prime}(a)$.

Define the auxiliary function $\varphi(t)=f(t)-y t$;
3. Apply the extreme value theorem to φ;
4. Analyse the sign of $\varphi^{\prime}(a)$ and $\varphi^{\prime}(b)$, and whether φ can attain its maximum value at a or b to get the desired conclusion.

Proof. If y equals $f^{\prime}(a)$ or $f^{\prime}(b)$, then setting x equal to a or b, respectively, gives the desired result.

Now assume that y is strictly between $f^{\prime}(a)$ and $f^{\prime}(b)$, and in particular that $f^{\prime}(b)<y<$ $f^{\prime}(a)$. Let $\varphi: I \rightarrow \mathbb{R}$ such that $\varphi(t)=f(t)-y t$. If it is the case that $f^{\prime}(a)<y<f^{\prime}(b)$, we adjust our below proof, instead asserting that φ has its minimum on $[a, b]$.

Since φ is continuous on the closed interval $[a, b]$, the maximum value of φ on $[a, b]$ is attained at some point in $[a, b]$, according to the extreme value theorem.

Because $\varphi^{\prime}(a)=f^{\prime}(a)-y>0$, we know φ cannot attain its maximum value at a. (If it did, then $\frac{\varphi(t)-\varphi(a)}{t-a} \leq 0$ for all $t \in(a, b]$, which implies $\varphi^{\prime}(a) \leq 0$.)

Likewise, because $\varphi^{\prime}(b)=f^{\prime}(b)-y<0$, we know φ cannot attain its maximum value at b.
Therefore, φ must attain its maximum value at some point $x \in(a, b)$. Hence, we have $\varphi^{\prime}(x)=0$, i.e. $f^{\prime}(x)=y$.

