Exercise set 5: Solutions

Norwegian University of Science and Technology
Department of Mathematical
Sciences

1 Let $y: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto \frac{1}{a+b x}$, where $a \neq 0, b \neq 0$.
a) Find $\frac{\mathrm{d}^{3} y}{(\mathrm{~d} x)^{3}}(x)$.
b) Find a general formula for $\frac{\mathrm{d}^{n} y}{(\mathrm{~d} x)^{n}}(x)$ for $n \in \mathbb{N}$. Give an argument for it.

Solution.

$$
\begin{align*}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =(-1) b(a+b x)^{-2}=(-1)^{1} \cdot 1!\cdot b^{1}(a+b x)^{-1-1} \\
\frac{\mathrm{~d}^{2} y}{(\mathrm{~d} x)^{2}} & =(-1)(-2) b^{2}(a+b x)^{-3}=(-1)^{2} \cdot 2!\cdot b^{2}(a+b x)^{-2-1} \\
\frac{\mathrm{~d}^{3} y}{(\mathrm{~d} x)^{3}} & =(-1)(-2)(-3) b^{3}(a+b x)^{-4}=(-1)^{3} \cdot 3!\cdot b^{3}(a+b x)^{-3-1} \\
& \vdots \tag{1}\\
\frac{\mathrm{~d}^{n} y}{(\mathrm{~d} x)^{n}} & =(-1)^{n} \cdot n!\cdot b^{n}(a+b x)^{-n-1}
\end{align*}
$$

So the answer of \mathbf{a}) is $\frac{\mathrm{d}^{3} y}{(\mathrm{~d} x)^{3}}=(-1)(-2)(-3) b^{3}(a+b x)^{-4}$.
For \mathbf{b}), let us use mathematical induction to show (1) is correct. When $n=1, \frac{\mathrm{~d} y}{\mathrm{~d} x}=$ $-b(a+b x)^{-2}=(-1)^{1} \cdot 1!\cdot b^{1}(a+b x)^{-1-1}$. The case $k=1$ is true. Assume (1) is true for $k=n-1$, that is, $\frac{\mathrm{d}^{n-1} y}{(\mathrm{~d} x)^{n-1}}=(-1)^{n-1} \cdot(n-1)!\cdot b^{n-1}(a+b x)^{-n}$. Then we take the derivative one more time to $\frac{\mathrm{d}^{n-1} y}{(\mathrm{~d} x)^{n-1}}$ to get

$$
\frac{\mathrm{d}^{n} y}{(\mathrm{~d} x)^{n}}=(-1)^{n-1} \cdot(n-1)!\cdot b^{n-1} \cdot(-n) b(a+b x)^{-n-1}=(-1)^{n} \cdot n!\cdot b^{n}(a+b x)^{-n-1}
$$

which gives (1).

2 Show that

$$
\sin (2 x)>x \quad \text { when } \quad 0<x<\frac{\pi}{8}
$$

Prove it analytically, not graphically.

Solution.

Since $0<x<\frac{\pi}{8}$, by the Mean-Value Theorem, there exists $c \in(0,2 x)$, such that

$$
\frac{\sin (2 x)-\sin (0)}{2 x-0}=\left.\frac{\mathrm{d}}{\mathrm{~d} x} \sin (x)\right|_{x=c}=\cos (c)
$$

Since $0<c<2 x<\frac{\pi}{4}$, we have $0<c<\frac{\pi}{4}$, so $\frac{\sqrt{2}}{2}<\cos (c)<1$. Thus,

$$
\frac{\sin (2 x)-\sin (0)}{2 x-0}>\frac{\sqrt{2}}{2}, \quad \sin (2 x)>\sqrt{2} x>x, \quad 0<x<\frac{\pi}{8}
$$

3 The volume V in a water tank can be described using the formula

$$
V(t)=350(20-t)^{2} \mathrm{~L}, \quad t \geq 0
$$

The relevant physical unit is liters (L), and we count $t=0$ as the start time. The time t is measured in minutes. How much water flows out per minute after 5 minutes; after 15 minutes?

Solution.

Volume in tank is $V(t)=350(20-t)^{2} \mathrm{~L}$ at $t \mathrm{~min}$. At $t=5$, water volume is changing at rate

$$
\left.\frac{\mathrm{d} V}{\mathrm{~d} t}\right|_{t=5}=-\left.700(20-t)\right|_{t=5}=-10500
$$

Water is draining out at $10500 \mathrm{~L} / \mathrm{min}$ at that time.
At $t=15$, water volume is changing at rate

$$
\left.\frac{\mathrm{d} V}{\mathrm{~d} t}\right|_{t=15}=-\left.700(20-t)\right|_{t=15}=-3500
$$

Water is draining out at $3500 \mathrm{~L} / \mathrm{min}$ at that time.

4 Show that the function $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto x^{3}$ is increasing on the whole real line even though $f^{\prime}(x)$ is not positive at every point.

Solution.

$f(x)=x^{3}$ is increasing on $(-\infty, 0)$ and $(0, \infty)$ because $f^{\prime}(x)=3 x^{2}>0$ there. But $f\left(x_{1}\right)<f(0)=0<f\left(x_{2}\right)$ whenever $x_{1}<0<x_{2}$, so f is also increasing on intervals containing the origin.

5 Use (formal) implicit differentiation to find the tangent to the curve (x, y) when

$$
x^{2}+y^{2}+2 x y+x=1, \quad(x, y)=(0,1)
$$

Solution.

$$
\begin{aligned}
x^{2}+y^{2}+2 x y+x & =1, \\
2 x+2 y y^{\prime}+2 y+2 x y^{\prime}+1 & =0 .
\end{aligned}
$$

At $(x, y)=(0,1), 2 y^{\prime}+2+1=0$, so the slope is $y^{\prime}=-\frac{3}{2}$. Thus, the equation of the tangent line is

$$
y-1=-\frac{3}{2} x, \quad \text { or } \quad 3 x+2 y-2=0
$$

6 Let $z: \mathbb{R} \backslash A \rightarrow \mathbb{R}, x \mapsto \tan \left(\frac{x}{2}\right)$, where $A=\left\{x: x=\frac{\pi}{4}+\frac{k \pi}{2}, k \in \mathbb{Z}\right\}$. Show that

$$
\frac{\mathrm{d} x}{\mathrm{~d} z}=\frac{2}{1+z^{2}}, \quad \sin (x)=\frac{2 z}{1+z^{2}}, \quad \text { and } \quad \cos (x)=\frac{1-z^{2}}{1+z^{2}}
$$

Solution.

If $z=\tan \left(\frac{x}{2}\right)$, then

$$
1=\sec ^{2}\left(\frac{x}{2}\right) \frac{1}{2} \frac{\mathrm{~d} x}{\mathrm{~d} z}=\frac{1+\tan ^{2}\left(\frac{x}{2}\right)}{2} \frac{\mathrm{~d} x}{\mathrm{~d} z}=\frac{1+z^{2}}{2} \frac{\mathrm{~d} x}{\mathrm{~d} z}
$$

Thus, $\frac{\mathrm{d} x}{\mathrm{~d} z}=\frac{2}{1+z^{2}}$. Also

$$
\begin{aligned}
& \cos (x)=2 \cos ^{2}\left(\frac{x}{2}\right)-1=\frac{2}{\sec ^{2}\left(\frac{x}{2}\right)}-1=\frac{2}{1+z^{2}}-1=\frac{1-z^{2}}{1+z^{2}} \\
& \sin (x)=2 \sin \left(\frac{x}{2}\right) \cos \left(\frac{x}{2}\right)=\frac{2 \tan \left(\frac{x}{2}\right)}{1+\tan ^{2}\left(\frac{x}{2}\right)}=\frac{2 z}{1+z^{2}}
\end{aligned}
$$

7 Determine

$$
\int \frac{2 x}{\sqrt{x^{2}+1}} \mathrm{~d} x
$$

Solution.

Since $\frac{\mathrm{d}}{\mathrm{d} x} \sqrt{x^{2}+1}=\frac{x}{\sqrt{x^{2}+1}}$, therefore

$$
\int \frac{2 x}{\sqrt{x^{2}+1}} \mathrm{~d} x=2 \sqrt{x^{2}+1}+C
$$

8 Let $f: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R}, x \mapsto x-\frac{4}{x}$. Show that $f(-1)=f(4)$, but that there is no point $c \in(-1,4)$ such that $f^{\prime}(c)=0$. Why does this not contradict Rolle's theorem?

Solution.

A direct computation shows that

$$
f(-1)=-1+4=3, \quad f(4)=4-1=3, \quad \text { so } \quad f(-1)=f(4)
$$

Firstly, we see that when $x \rightarrow 0^{+}, f(x) \rightarrow-\infty$; when $x \rightarrow 0^{-}, f(x) \rightarrow+\infty$, which means at $x=0$, the function is not continuous. Secondly, $f^{\prime}(x)=1+\frac{4}{x^{2}}>0$. This shows that on $(-\infty, 0) \cup(0,+\infty), f$ is strictly increasing and it does not have a critical point also on $(-1,4)$. Thus, there is no point $c \in(-1,4)$ such that $f^{\prime}(c)=0$.

Recall that the condition of Rolle's Theorem requires that the function is continuous on $[a, b]$ and differentiable on (a, b). By the above analysis, f is not continuous, and not differentiable at $x=0$. Rolle's Theorem can not be applied in such case. So this does not contradict Rolle's Theorem.

9 Locate any inflection points of the given function below.

$$
f(x)=\frac{x^{3}}{3}-4 x^{2}+12 x-\frac{25}{3}, \quad x \in \mathbb{R}
$$

Solution.

$$
f^{\prime}(x)=x^{2}-8 x+12, \quad f^{\prime \prime}(x)=2 x-8
$$

When $x=4, f^{\prime \prime}(x)=0$. On the interval $(-\infty, 4), f^{\prime \prime}(x)<0$; on the interval $(4,+\infty)$, $f^{\prime \prime}(x)>0$. So the point $(4,-3)$ is the inflection point of $f(x)$.

