1 Find the equations of the form $y=k x+m$ tangent at x_{0} to
a) $y=\frac{1}{\sqrt{x}}, \quad x_{0}=9$
b) $y=\frac{1}{x^{2}+1}, \quad x_{0}=0$.

Solution.

a) The slope of $y=\frac{1}{\sqrt{x}}$ at $x_{0}=9$ is

$$
\begin{aligned}
k & =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{1}{\sqrt{9+h}}-\frac{1}{3}\right) \\
& =\lim _{h \rightarrow 0} \frac{3-\sqrt{9+h}}{3 h \sqrt{9+h}} \cdot \frac{3+\sqrt{9+h}}{3+\sqrt{9+h}} \\
& =\lim _{h \rightarrow 0} \frac{9-9-h}{3 h \sqrt{9+h}(3+\sqrt{9+h})} \\
& =-\frac{1}{54} .
\end{aligned}
$$

The tangent line at $\left(9, \frac{1}{3}\right)$ is $y=\frac{1}{3}-\frac{1}{54}(x-9)$, i.e. $y=-\frac{1}{54} x+\frac{1}{2}$.
b) The slope of $y=\frac{1}{x^{2}+1}$ at $x_{0}=0$ is

$$
k=\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{1}{h^{2}+1}-1\right)=\lim _{h \rightarrow 0} \frac{-h}{h^{2}+1}=0 .
$$

The tangent line at $(0,1)$ is $y=1$.

2 Calculate, using the definition, the derivative of the following functions
a) $f: \mathbb{R} \rightarrow \mathbb{R}, \quad x \mapsto 1+4 x-5 x^{2}$
b) $g: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R}, \quad x \mapsto x+\frac{1}{x}$
c) $h:(-1, \infty) \rightarrow(0, \infty), \quad x \mapsto \frac{1}{\sqrt{1+x}}$.

Also determine the maximal domain for the functions f^{\prime}, g^{\prime} and h^{\prime}.

Solution.

a)

$$
\begin{aligned}
f(x) & =1+4 x-5 x^{2} . \\
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{1+4(x+h)-5(x+h)^{2}-\left(1+4 x-5 x^{2}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{4 h-10 x h-5 h^{2}}{h}=4-10 x .
\end{aligned}
$$

The maximal domain is $x \in \mathbb{R}$.
b)

$$
\begin{aligned}
g(x) & =x+\frac{1}{x} \\
g^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{x+h+\frac{1}{x+h}-x-\frac{1}{x}}{h} \\
& =\lim _{h \rightarrow 0}\left(1+\frac{x-x-h}{h(x+h) x}\right) \\
& =1+\lim _{h \rightarrow 0} \frac{-1}{(x+h) x}=1-\frac{1}{x^{2}}
\end{aligned}
$$

The maximal domain is $x \in \mathbb{R} \backslash\{0\}$.
c)

$$
\begin{aligned}
h(x) & =\frac{1}{\sqrt{1+x}} . \\
h^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\frac{1}{\sqrt{1+x+h}}-\frac{1}{\sqrt{1+x}}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{1+x}-\sqrt{1+x+h}}{h \sqrt{1+x+h} \sqrt{1+x}} \\
& =\lim _{h \rightarrow 0} \frac{1+x-1-x-h}{h \sqrt{1+x+h} \sqrt{1+x}(\sqrt{1+x}+\sqrt{1+x+h})} \\
& =\lim _{h \rightarrow 0}-\frac{1}{\sqrt{1+x+h} \sqrt{1+x}(\sqrt{1+x}+\sqrt{1+x+h})} \\
& =-\frac{1}{2(1+x)^{\frac{3}{2}}} .
\end{aligned}
$$

The maximal domain is $x>-1$.

3 Show that the curve $y=x^{2}$ and the straight line $x+4 y=18$ intersect at right angles at one of their two intersection points.
Hint: Find the product of their slopes at their intersection points.

Solution.

The intersection points of $y=x^{2}$ and $x+4 y=18$ satisfy

$$
\begin{aligned}
4 x^{2}+x-18 & =0 \\
(4 x+9)(x-2) & =0
\end{aligned}
$$

Therefore $x=-\frac{9}{4}$ or $x=2$.
The slope of $y=x^{2}$ is $k_{1}=2 x$.
At $x=-\frac{9}{4}, k_{1}=-\frac{9}{2}$. At $x=2, k_{1}=4$.
The slope of $x+4 y=18$, i.e. $y=-\frac{1}{4} x+\frac{18}{4}$, is $k_{2}=-\frac{1}{4}$.
Thus, at $x=2$, the product of these slopes is $4 \cdot\left(-\frac{1}{4}\right)=-1$. So, the curve and line intersect at right angles at that point.

4 Use the factoring of a difference of cubes

$$
a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)
$$

to show that

$$
\frac{\mathrm{d}}{\mathrm{~d} x} x^{\frac{1}{3}}=\frac{1}{3} x^{-\frac{2}{3}}, \quad x \neq 0
$$

with the help of the definition of derivative.

Solution.

$$
\begin{aligned}
f(x)= & x^{\frac{1}{3}} . \\
f^{\prime}(x)= & \lim _{h \rightarrow 0} \frac{(x+h)^{\frac{1}{3}}-x^{\frac{1}{3}}}{h} \\
= & \lim _{h \rightarrow 0} \frac{(x+h)^{\frac{1}{3}}-x^{\frac{1}{3}}}{h} \\
& \times \frac{(x+h)^{\frac{2}{3}}+(x+h)^{\frac{1}{3}} x^{\frac{1}{3}}+x^{\frac{2}{3}}}{(x+h)^{\frac{2}{3}}+(x+h)^{\frac{1}{3}} x^{\frac{1}{3}}+x^{\frac{2}{3}}} \\
= & \lim _{h \rightarrow 0} \frac{x+h-x}{h\left[(x+h)^{\frac{2}{3}}+(x+h)^{\frac{1}{3}} x^{\frac{1}{3}}+x^{\frac{2}{3}}\right]} \\
= & \lim _{h \rightarrow 0} \frac{1}{(x+h)^{\frac{2}{3}}+(x+h)^{\frac{1}{3}} x^{\frac{1}{3}}+x^{\frac{2}{3}}} \\
= & \frac{1}{3} x^{-\frac{2}{3}}, \quad x \neq 0 .
\end{aligned}
$$

5 Find
a) $\frac{\mathrm{d}}{\mathrm{d} t}\left(\frac{\pi}{2-\pi t}\right), \quad t \neq \frac{2}{\pi}$
b) $\frac{\mathrm{d}}{\mathrm{d} x}\left[\left(x^{2}+4\right)(\sqrt{x}+1)\left(5 x^{\frac{2}{3}}-2\right)\right], \quad x>0$
c) $\left.\frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{x}{2 x+\frac{1}{3 x+1}}\right)\right|_{x=1}$.

Solution

a)

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\pi}{2-\pi t}\right)=-\frac{\pi}{(2-\pi t)^{2}}(-\pi)=\frac{\pi^{2}}{(2-\pi t)^{2}}, \quad t \neq \frac{2}{\pi} .
$$

b)

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} x}\left[\left(x^{2}+4\right)(\sqrt{x}+1)\left(5 x^{\frac{2}{3}}-2\right)\right] \\
= & 2 x(\sqrt{x}+1)\left(5 x^{\frac{2}{3}}-2\right)+\frac{1}{2 \sqrt{x}}\left(x^{2}+4\right)\left(5 x^{\frac{2}{3}}-2\right)+\frac{10}{3} x^{-\frac{1}{3}}\left(x^{2}+4\right)(\sqrt{x}+1) \\
= & \frac{95}{6} x^{\frac{13}{6}}-4 x+\frac{70}{3} x^{\frac{1}{6}}+\frac{40}{3} x^{\frac{5}{3}}-5 x^{\frac{3}{2}}+\frac{40}{3} x^{-\frac{1}{3}}-4 x^{-\frac{1}{2}} .
\end{aligned}
$$

c)

$$
\begin{aligned}
& \left.\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{x}{2 x+\frac{1}{3 x+1}}\right)\right|_{x=1}=\left.\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{3 x^{2}+x}{6 x^{2}+2 x+1}\right)\right|_{x=1} \\
= & \left.\frac{\left(6 x^{2}+2 x+1\right)(6 x+1)-\left(3 x^{2}+x\right)(12 x+2)}{\left(6 x^{2}+2 x+1\right)^{2}}\right|_{x=1}=\left.\frac{6 x+1}{\left(6 x^{2}+2 x+1\right)^{2}}\right|_{x=1}=\frac{7}{81} .
\end{aligned}
$$

6 Find values of a and b that make

$$
f(x)= \begin{cases}a x+b, & x<0 \\ 2 \sin x+3 \cos x, & x \geq 0\end{cases}
$$

differentiable at $x=0$.

Solution.

f will be differentiable at $x=0$ if

$$
\begin{array}{r}
2 \sin 0+3 \cos 0=b, \quad \text { and } \\
\left.\frac{\mathrm{d}}{\mathrm{~d} x}(2 \sin x+3 \cos x)\right|_{x=0}=a
\end{array}
$$

Thus, we need $b=3$ and $a=2$.

7 Find
a) $\frac{\mathrm{d}}{\mathrm{d} x}\left(2+|x|^{3}\right)^{\frac{1}{3}}$
b) $\frac{\mathrm{d}}{\mathrm{d} t} f(2-3 f(4-5 t)), \quad f: \mathbb{R} \rightarrow \mathbb{R}$ arbitrary
c) $\left.\frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{\sqrt{x^{2}-1}}{x^{2}+1}\right)\right|_{x=-2}$
and state in \mathbf{a}), b) and \mathbf{c}) for which values of x applies.

Solution.

a)

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} x}\left(2+|x|^{3}\right)^{\frac{1}{3}}=\frac{1}{3}\left(2+|x|^{3}\right)^{-\frac{2}{3}}\left(3|x|^{2}\right) \operatorname{sgn}(x)=|x|^{2}\left(2+|x|^{3}\right)^{-\frac{2}{3}}\left(\frac{x}{|x|}\right) \\
= & x|x|\left(2+|x|^{3}\right)^{-\frac{2}{3}}, \quad x \in \mathbb{R} .
\end{aligned}
$$

b)

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} f(2-3 f(4-5 t)) & =f^{\prime}(2-3 f(4-5 t))\left(-3 f^{\prime}(4-5 t)\right)(-5) \\
& =15 f^{\prime}(4-5 t) f^{\prime}(2-3 f(4-5 t)), \quad t \in \mathbb{R}
\end{aligned}
$$

c)

$$
\begin{aligned}
\left.\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\sqrt{x^{2}-1}}{x^{2}+1}\right)\right|_{x=-2} & =\left.\frac{\left(x^{2}+1\right) \frac{x}{\sqrt{x^{2}-1}}-\sqrt{x^{2}-1}(2 x)}{\left(x^{2}+1\right)^{2}}\right|_{x=-2} \\
& =\frac{2}{25 \sqrt{3}}
\end{aligned}
$$

8 Calculate
a) $\lim _{x \rightarrow \pi} \sec (1+\cos (x))$. A secant function is defined by $\sec (x)=\frac{1}{\cos (x)}$, where $x \in \mathbb{R}$ and $x \neq \frac{\pi}{2}+k \pi, k \in \mathbb{Z}$.
b) $\lim _{x \rightarrow 0} \cos \left(\frac{\pi-\pi \cos ^{2}(x)}{x^{2}}\right)$.

Solution.

a)

$$
\lim _{x \rightarrow \pi} \sec (1+\cos (x))=\sec (1-1)=\sec (0)=1
$$

b)

$$
\lim _{x \rightarrow 0} \cos \left(\pi\left(\frac{\sin (x)}{x}\right)^{2}\right)=-1
$$

9 Assume $f(x)$ is continuous at $x=0$. For the following statements, if TRUE, give reasons; if FALSE, give a counterexample.
a) If $\lim _{x \rightarrow 0} \frac{f(x)}{x}$ exists, then $f(0)=0$.
b) If $\lim _{x \rightarrow 0} \frac{f(x)+f(-x)}{x}$ exists, then $f(0)=0$.
c) If $\lim _{x \rightarrow 0} \frac{f(x)}{x}$ exists, then $f^{\prime}(0)$ exists.
d) If $\lim _{x \rightarrow 0} \frac{f(x)-f(-x)}{x}$ exists, then $f^{\prime}(0)$ exists.

Solution.

In a) and \mathbf{b}), since the limitation of denominator is 0 , so the limit of numerator must also be 0 , then we have $f(0)=0$. Thus a) and \mathbf{b}) are TRUE.

In c), $\lim _{x \rightarrow 0} \frac{f(x)}{x}$ exists, then $f(0)=0, f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{f(x)}{x}$, so $f^{\prime}(0)$ exists. c) is TRUE.

In d), take $f(x)=|x|$, then

$$
\lim _{x \rightarrow 0} \frac{f(x)-f(-x)}{x}=0,
$$

but $f(x)$ is not differentiable at $x=0$. So d) is FALSE.

