MA1101 Basic Calculus I
Fall 2021
Exercise set 13: Solutions

Norwegian University of Science and Technology
Department of Mathematical
Sciences

11 Compute $\lim _{n \rightarrow \infty} x_{n}$ for the following sequences or explain why the limit does not exist.
a)

$$
x_{n}= \begin{cases}\frac{n+2}{n+1}, & n \text { is odd } \\ \frac{n}{n+1}, & n \text { is even }\end{cases}
$$

b)

$$
x_{n}= \begin{cases}\frac{n}{1+n}, & n \text { is odd } \\ \frac{n}{1-n}, & n \text { is even }\end{cases}
$$

c)

$$
x_{n}= \begin{cases}1+\frac{1}{n}, & n \text { is odd } \\ (-1)^{n}, & n \text { is even }\end{cases}
$$

d)

$$
x_{n}= \begin{cases}1, & n<10^{6} \\ \frac{1}{n}, & n \geq 10^{6}\end{cases}
$$

Solution.

a) When n is odd, $\lim _{n \rightarrow \infty} x_{n}=1$; when n is even, $\lim _{n \rightarrow \infty} x_{n}=1$. So $\lim _{n \rightarrow \infty} x_{n}=1$.
b) When n is odd, $\lim _{n \rightarrow \infty} x_{n}=1$; when n is even, $\lim _{n \rightarrow \infty} x_{n}=-1$. By the uniqueness of limit, $\lim _{n \rightarrow \infty} x_{n}$ does not exist.
c) $\lim _{n \rightarrow \infty} x_{n}=1$.
d) $\lim _{n \rightarrow \infty} x_{n}=0$. The limit of the sequence is not related to the former finite terms.

0 Evaluate the integral below.
a)

$$
\int \frac{1}{5-x^{2}} d x
$$

b)

$$
\int \frac{1}{\left(a^{2}+x^{2}\right)^{\frac{3}{2}}} d x
$$

Hint: Let $x=a \tan (\theta)$.
c)

$$
\int_{0}^{\frac{\pi}{2}} \frac{1}{\cos x} d x
$$

Hint: Multiply by $\frac{\cos x}{\cos x}$ and use $u=\sin x$.

Solution.

a)

$$
\begin{aligned}
\frac{1}{5-x^{2}} & =\frac{A}{\sqrt{5}-x}+\frac{B}{\sqrt{5}+x} \\
& =\frac{(A+B) \sqrt{5}+(A-B) x}{5-x^{2}} \\
& \Longrightarrow\left\{\begin{array}{l}
A+B=\frac{1}{\sqrt{5}}, \\
A-B=0
\end{array} \Longrightarrow A=B=\frac{1}{2 \sqrt{5}}\right.
\end{aligned}
$$

Then

$$
\begin{aligned}
\int \frac{1}{5-x^{2}} d x & =\frac{1}{2 \sqrt{5}} \int\left(\frac{1}{\sqrt{5}-x}+\frac{1}{\sqrt{5}+x}\right) d x \\
& =\frac{1}{2 \sqrt{5}}(-\ln |\sqrt{5}-x|+\ln |\sqrt{5}+x|)+C \\
& =\frac{1}{2 \sqrt{5}} \ln \left|\frac{\sqrt{5}+x}{\sqrt{5}-x}\right|+C
\end{aligned}
$$

b)

Let $x=a \tan (\theta)$, then $d x=a \sec ^{2}(\theta) d \theta$. Thus,

$$
\begin{aligned}
\int \frac{1}{\left(a^{2}+x^{2}\right)^{\frac{3}{2}}} d x & =\int \frac{a \sec ^{2}(\theta) d \theta}{\left[a^{2}+a^{2} \tan ^{2}(\theta)\right]^{\frac{3}{2}}} \\
& =\int \frac{a \sec ^{2}(\theta)}{a^{3} \sec ^{3}(\theta)} d \theta \\
& =\frac{1}{a^{2}} \int \cos (\theta) d \theta=\frac{1}{a^{2}} \sin (\theta)+C=\frac{x}{a^{2} \sqrt{a^{2}+x^{2}}}+C
\end{aligned}
$$

c) Since $\cos \frac{\pi}{2}=0$, this is an improper integral.

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{2}} \frac{1}{\cos x} d x= & \lim _{C \rightarrow\left(\frac{\pi}{2}\right)-} \int_{0}^{C} \frac{1}{\cos x} d x \\
= & \lim _{C \rightarrow\left(\frac{\pi}{2}\right)-} \int_{0}^{C} \frac{\cos x}{\cos ^{2} x} d x \\
& \lim _{C \rightarrow\left(\frac{\pi}{2}\right)-} \int_{0}^{C} \frac{\cos x}{1-\sin ^{2} x} d x
\end{aligned}
$$

Substituting $u=\sin x$ and using partial fractions to integrate yields:

$$
\left.\lim _{C \rightarrow\left(\frac{\pi}{2}\right)-} \ln \left|\frac{1+\sin x}{1-\sin x}\right|\right|_{0} ^{C}=\lim _{C \rightarrow\left(\frac{\pi}{2}\right)-} \ln \left|\frac{1+\sin C}{1-\sin C}\right|=\infty .
$$

This integral diverges to infinity.

3 Let

$$
f(x)= \begin{cases}\frac{x}{3} \sin \left(\frac{2}{x}\right), & x<0, \\ a, & x=0, \\ \frac{2}{x} \sin \left(\frac{x}{3}\right), & x>0 .\end{cases}
$$

Show that f is discontinuous at $x=0$ no matter what the value of a is.
Hint: Consider $\lim _{x \rightarrow 0+} f(x)$ and $\lim _{x \rightarrow 0-} f(x)$.

Solution.

$\lim _{x \rightarrow 0-} f(x)=0, \lim _{x \rightarrow 0+} f(x)=\lim _{x \rightarrow 0+} \frac{\sin \left(\frac{x}{3}\right)}{\frac{x}{3}} \cdot \frac{2}{3}=\frac{2}{3}$. Since the limits from left and right are not equal, the function is discontinuous.

4 Find the sum of the given series, or show that the series diverges.
a)

$$
\sum_{n=0}^{\infty} \frac{1}{e^{n}}
$$

b)

$$
\sum_{n=0}^{\infty} \frac{n}{n+2}
$$

Solution.

a)

$$
\sum_{n=0}^{\infty} \frac{1}{e^{n}}=1+\frac{1}{e}+\frac{1}{e^{2}}+\cdots=\frac{1}{1-\frac{1}{e}}=\frac{e}{e-1}
$$

b) $\sum_{n=0}^{\infty} \frac{n}{n+2}$ diverges to infinity since $\frac{n}{n+2}=1>0$.

5 Locate any inflection points of the given function below.

$$
f(x)=\int_{0}^{x}(1-t) \arctan (t) d t
$$

Solution.

$$
f^{\prime}(x)=(1-x) \arctan (x)
$$

let $f^{\prime}(x)=0$, then $x=1$ and $x=0$. Then

x	$(-\infty, 0)$	0	$(0,1)$	1	$(1, \infty)$
$f^{\prime}(x)$	-	0	+	0	-

Thus, $x=1$ is the maximal point of $f(x)$, and $x=0$ is the minimal point.

6 Use the mean value theorem for integrals to calculate the limit below.

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{x^{n}}{1+x} d x
$$

Solution.

By the mean value theorem for integrals, we have

$$
\int_{0}^{1} \frac{x^{n}}{1+x} d x=\frac{1}{1+\xi} \int_{0}^{1} x^{n} d x, \quad 0 \leq \xi \leq 1
$$

Note that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} x^{n} d x=\lim _{n \rightarrow \infty} \frac{1}{n+1}=0, \quad \text { and } \quad \frac{1}{2} \leq \frac{1}{1+\xi} \leq 1
$$

Thus,

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{x^{n}}{1+x} d x=0
$$

7 Let $f \in C([0,3], \mathbb{R})$ be differentiable on the open interval $(0,3)$, and $f(0)+2 f(1)+$ $3 f(2)=6, f(3)=1$. Show that there exists $\xi \in(0,3)$, such that $f^{\prime}(\xi)=0$.
Hint: Consider the minimum and maximum of f on interval $[0,2]$, then use the intermediate value theorem to show there exists $c \in[0,2]$, such that $f(c)=1$. To get some intuition draw a couple of examples, or start with the case where $f(x)$ is positive on the interval $[0,2]$.

Solution.

Since f is continuous on $[0,3]$, there exists minimum m and maximum M of f on $[0,2]$. By

$$
6 m \leq f(0)+2 f(1)+3 f(2) \leq 6 M
$$

we have

$$
m \leq 1 \leq M
$$

By the intermediate value theorem, there exists $c \in[0,2]$, such that $f(c)=1$. Since $f(c)=f(3)=1$, by Rolle's theorem, there exists $\xi \in(c, 3) \subset(0,3)$, such that $f^{\prime}(\xi)=0$.

8 Old exam problem.

a) Solve the initial value problem

$$
\frac{y^{\prime}(x)}{2 x}-y(x)=1, \quad y(1)=2
$$

b) Show that the solution is uniformly continuous on $[1,2]$ but not on $(1, \infty)$.

Solution.

a) The equation is well defined for $x \neq 0$, and especially close to $x=1$ (initial data). A particulate solution is $y_{p}(x)=-1$, but we must add a homogeneous solution y_{h} with $y_{h}(1)=3$ to satisfy the condition $y(1)=2$. As long as $x, y_{h}(x) \neq 0$, apply

$$
\begin{aligned}
\frac{y_{h}^{\prime}(x)}{2 x}-y_{h}(x)=0 & \Longleftrightarrow \frac{y_{h}^{\prime}(x)}{y_{h}(x)}=2 x \quad \Longleftrightarrow \ln \left|y_{h}(x)\right|=x^{2}+C \\
& \Longleftrightarrow\left|y_{h}(x)\right|=e^{C} e^{x^{2}} \Longleftrightarrow y_{h}(x)=\tilde{C} e^{x^{2}}
\end{aligned}
$$

where C, \tilde{C} are arbitrary constants. Now choose \tilde{C} so that $y_{h}(1)=3$, that is, $\tilde{C}=\frac{3}{e}$. It follows that

$$
y(x)=\frac{3}{e} e^{x^{2}}-1
$$

which also solves the equation. (Note that y itself is defined for all $x \in \mathbb{R}$.)
It is possible to solve the equation e.g. also as a first-order linear equation by integrating factor or variation of the constant. Above, it is solved as a separable equation.

b)

Continuous functions are uniformly continuous on compact (closed and limited) interval. Since the above solution is continuous on \mathbb{R}, it therefore immediately follows that it is uniformly continuous on the interval [1,2].

Now consider $x_{2}>x_{1}>1$. Since $x \mapsto y(x)=\frac{3}{e} e^{x^{2}}-1$ is differentiable on \mathbb{R}, the mean value theorem gives

$$
\left|y\left(x_{1}\right)-y\left(x_{2}\right)\right|=\left|y^{\prime}(c)\right|\left|x_{1}-x_{2}\right|=\frac{6 c}{e} e^{c^{2}}\left|x_{1}-x_{2}\right| \geq e^{x_{1}^{2}}\left|x_{1}-x_{2}\right|
$$

In other words: for a given $\varepsilon>0$, no matter how small $\left|x_{1}-x_{2}\right|<\delta$ is,

$$
\left|y\left(x_{1}\right)-y\left(x_{2}\right)\right|>\varepsilon
$$

if x_{1} is large enough. The function is therefore not uniformly continuous on $(1, \infty)$.

