1 Sketch the graph of the following function

$$
f(x)=(x-1)^{2}+1 .
$$

Solution.

2 Show that the reverse triangle inequality

$$
|a-b| \geq||a|-|b||
$$

holds for all real numbers a and b.
Hint: Begin by moving the term from the triangle inequality.

Solution. The triangle inequality $|x+y| \leq|x|+|y|$ implies that

$$
|x| \geq|x+y|-|y| .
$$

Apply this inequality with $x=a-b$ and $y=b$ to get

$$
|a-b| \geq|a|-|b| .
$$

Similarly, $|a-b|=|b-a| \geq|b|-|a|$. Since $||a|-|b||$ is equal to either $|a|-|b|$ or $|b|-|a|$, depending on the sizes of a and b, we have

$$
|a-b| \geq||a|-|b|| .
$$

3 Find the roots of the following polynomial

$$
x^{4}+6 x^{3}+9 x^{2} .
$$

If a root is repeated, give its multiplicity. Also, write the polynomial as a product of linear factors.

Solution. $x^{4}+6 x^{3}+9 x^{2}=x^{2}\left(x^{2}+6 x+9\right)=x^{2}(x+3)^{2}$. There are two double roots, 0 and -3 .

4 Find the natural domain and range of the following functions.
a) $f(x)=x^{3}$
b) $f(x)=\sqrt{8-2 x}$
c) $f(x)=\frac{1}{1-\sqrt{x-2}}$

Solution.

a) $f(x)=x^{3}$; natural domain \mathbb{R}, range \mathbb{R}.
b) $f(x)=\sqrt{8-2 x}$; natural domain $(-\infty, 4]$, range $[0, \infty)$.
c) $f(x)=\frac{1}{1-\sqrt{x-2}}$; the denominator satisfies $x-2 \geq 0$ and $1-\sqrt{x-2} \neq 0$. Thus, natural domain $[2,3) \cup(3, \infty)$. Firstly, the equation $y=f(x)$ can be solved for $x=2+\left(1-\frac{1}{y}\right)^{2}$ so has a real solution provided $y \neq 0$. Secondly, when $x \in[2,3), 0<1-\sqrt{x-2} \leq 1$, so we have $f(x)=\frac{1}{1-\sqrt{x-2}} \geq 1$; when $x \in(3, \infty), 1-\sqrt{x-2}<0$, so we have $f(x)=\frac{1}{1-\sqrt{x-2}}<0$. Thus, range $(-\infty, 0) \cup[1, \infty)$.

5 Suppose that $-x$ belongs to the domain of a function f whenever x does. We say that f is an even function if

$$
f(-x)=f(x) \text { for every } x \text { in the domain of } f
$$

We say that f is an odd function if

$$
f(-x)=-f(x) \quad \text { for every } x \text { in the domain of } f
$$

What function f, defined on the real line \mathbb{R}, is both even and odd?

Solution. If f is both even and odd then $f(x)=f(-x)=-f(x)$, so $f(x)=0$ identically.

6 Let $f(x)=\frac{2}{x}$ and $g(x)=\frac{x}{1-x}$. Construct the following composite functions and specify the natural domain of each.
a) $f \circ g$
b) $g \circ f$

Solution. a)

$$
f \circ g=\frac{2}{\frac{x}{1-x}}=\frac{2(1-x)}{x}
$$

natural domain is $\{x \in \mathbb{R}: x \neq 0,1\}$.
b)

$$
g \circ f=\frac{\frac{2}{x}}{1-\frac{2}{x}}=\frac{2}{x-2}
$$

natural domain is $\{x \in \mathbb{R}: x \neq 0,2\}$.

7 Express $(\cos (3 x))$ in terms of $(\sin (x))$ and $(\cos (x))$.
Hint: Begin by $3 x=2 x+x$, and use sum formula of the cosine function.

Solution.

$$
\begin{aligned}
\cos (3 x) & =\cos (2 x+x) \\
& =\cos (2 x) \cos (x)-\sin (2 x) \sin (x) \\
& =\left(2 \cos ^{2}(x)-1\right) \cos (x)-2 \sin ^{2}(x) \cos (x) \\
& =2 \cos ^{3}(x)-\cos (x)-2\left(1-\cos ^{2}(x)\right) \cos (x) \\
& =4 \cos ^{3}(x)-3 \cos (x) .
\end{aligned}
$$

8 A tangent function is defined by

$$
\tan (x)=\frac{\sin (x)}{\cos (x)}
$$

where $x \in \mathbb{R}$ and $x \neq \frac{\pi}{2}+k \pi, k \in \mathbb{Z}$.
Specify the natural domain and prove the following identity

$$
\frac{1-\cos (x)}{1+\cos (x)}=\tan ^{2}\left(\frac{x}{2}\right)
$$

Solution. To assure the above equality exists, we need

$$
1+\cos (x) \neq 0 \quad \text { and } \quad \frac{x}{2} \neq \frac{\pi}{2}+k \pi
$$

which gives the natural domain

$$
\{x \in \mathbb{R}: x \neq \pi+2 k \pi\}
$$

Then

$$
\frac{1-\cos (x)}{1+\cos (x)}=\frac{2 \sin ^{2}\left(\frac{x}{2}\right)}{2 \cos ^{2}\left(\frac{x}{2}\right)}=\tan ^{2}\left(\frac{x}{2}\right)
$$

