For any $p \geqslant 1$, the series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ is called the harmonic series of order p.

We will show that for $p=1$ the harmonic series diverges.

LEMMA 4.7: If a sequence $\left(x_{n}\right)_{n=1}^{\infty}$ converges to $l \in \mathbb{R}$, then every subsequence $\left(x_{k_{n}}\right)_{n=1}^{\infty}$ also converges to $l \in \mathbb{R}$.
PROOF
Let $\left(X_{k_{n}}\right)_{n=1}^{\infty}$ be a subsequence of $\left(X_{n}\right)_{n=1}^{\infty}$. Let $\varepsilon>0$. Because $\lim _{n \rightarrow \infty} x_{n}=l$, there exist's $n_{0} \in \mathbb{N}$ such that

$$
\left|x_{n}-e\right|<\varepsilon \text { for all } n \geqslant n_{0} \text {. }
$$

Since $k_{n} \geqslant n$ for any $n=1,2, \ldots$
therefore for all $n \geqslant n_{0}, k_{n} \geqslant n \geqslant n_{0}$ and thus $\left|x_{k_{n}}-l\right|<\varepsilon$ for all $n \geqslant n_{0}$.

THEOREM 4.8: The series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges. PROOF
Let ie.
$\left(S_{n}\right)_{n=1}^{\infty}$ be the sequence of partial sums,

$$
S_{n}=1+\frac{1}{2}+\cdots+\frac{1}{n}, \quad n=1,2, \ldots
$$

By Lemma 4.7 it suffices to find a subsequence of $\left(S_{n}\right) \infty_{n=1}^{\infty}$ which diverges.

$$
\left.\begin{array}{rl}
S_{2^{n}}=1 & +\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{2^{n}} \\
=1 & +\frac{1}{2^{1}}+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)+\ldots \\
\cdots & +\left(\frac{1}{2^{n-1}+1}+\frac{1}{8^{n-1}+2}+\cdots+\frac{1}{2^{n}}\right) \\
>1 & +\frac{1}{8}+\left(\frac{1}{4}+\frac{1}{4}\right)+\left(\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}\right)+ \\
\cdots+\left(\frac{1}{2^{n}}+\frac{1}{2^{n}}+\cdots+\frac{1}{2^{n}}\right) \\
\neq n^{n-1}
\end{array}\right) .
$$

We say that $\sum_{n=1}^{\infty} a_{n}$ is a telescopic series if $a_{n}=b_{n+1}-b_{n}$ for some sequence $\left(b_{n}\right)_{n=1}^{\infty}$.
If $\sum_{n=1}^{\infty} a_{n}$ is a telescopic series with $a_{n} \stackrel{n=1}{=} b_{n+1}-b_{n}, n=1,2, \ldots$ and $\lim _{n \rightarrow \infty} b_{n}=l \in \mathbb{R}$ then $\sum_{n=1}^{a_{n}+1} a_{n}$ converges.
Indeed, if $S_{n}=a_{1}+a_{2}+\ldots+a_{n}$
then

$$
\begin{aligned}
S_{n} & =a_{1}+a_{2}+\ldots+a_{n} \\
& =\left(b_{2}-b_{1}\right)+\left(b_{3}-b_{2}\right)+1 /+\left(b_{n+1}-b_{n}\right) \\
& =b_{n+1}-b_{1} \\
& \rightarrow l-b_{1} .
\end{aligned}
$$

Egg. Show that $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ converges and find its value.

$$
\frac{1}{n(n+1)}=\frac{n+1-n}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}
$$

The $N-+h$ partial sum of the series is

$$
\begin{aligned}
S_{N} & =\sum_{n=1}^{N} \frac{1}{n(n+1)}=\sum_{n=1}^{N}\left(\frac{1}{n}-\frac{1}{n+1}\right) \\
& =1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\left(\cdots /+\frac{1}{N}-\frac{1}{N+1}\right. \\
& =1-\frac{1}{N+1} \rightarrow 1 \text { as } N \rightarrow \infty .
\end{aligned}
$$

We nave proved that $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=1$.
In the specific example of $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$
it was easy to soot that

$$
\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1} .
$$

We could have argued a follows:
we want to find coefficients $A, B \in \mathbb{R}$ such that

$$
\begin{array}{ll}
\frac{1}{x(x+1)}=\frac{A}{x}+\frac{B}{x+1} & \forall x \in \mathbb{R} \backslash\{0,-1\} \Rightarrow \\
A(x+1)+B x=1 & \forall x \in \mathbb{R} \mid\{0,-1\} \Rightarrow \\
(A+B) x+(A-1)=0 & \forall x \in \mathbb{R} \mid\{0,-1\}
\end{array}
$$

So $A-1=0 \quad A=1$
Thus

$$
A+B=0 \quad B=-1
$$

$$
\frac{1}{x(x+1)}=\frac{1}{x}-\frac{1}{x+1}
$$

and we could proceed with the partial sums...

This is a special case of the partial fraction decomposition.
Let

$$
f(x)=\frac{P(x)}{Q(x)}, \quad \operatorname{deg} P<\operatorname{deg} Q
$$

- The denom. $Q(x)$ can allays be factorised as a product of polynomials of $1^{\text {st }}$ and $2^{\text {nc }}$ degree, soly

$$
\begin{aligned}
Q(x)= & \left(a_{1} x+b_{1}\right)^{n_{1}} \cdot \cdots\left(a_{k} x+b_{k}\right)^{n_{k}} \cdot \\
& \cdot\left(c_{1} x^{2}+d_{1} x+e_{1}\right)^{m_{1}} \cdot \ldots \cdot\left(c_{e} x^{2}+d_{l} x+e_{e}\right)
\end{aligned}
$$

- We want to decompose $P(x)$ as a sum of frow

$$
a_{1} x+b_{1}, \ldots, a_{k} x+b_{k}, a_{1} x^{2}+d_{1} x+e_{1}, \ldots, c_{e} x^{2}+d_{e} x+e_{p}
$$

- For each factor $(a x+b)^{n}$ we want the terms

$$
\text { Le want the terms } \frac{A_{1}}{a x+b}+\frac{A_{2}}{(a x+b)^{2}}+\cdots+\frac{A_{n}}{(a x+b)^{n}}
$$

to appear in the sum, while for each factor $\left(c x^{2}+d x+e\right)^{m}$ we want the terms

$$
\frac{A_{1} x+B_{1}}{C x^{2}+d x+e}+\frac{A_{2} x+B_{2}}{\left(c x^{2}+d x+e\right)^{2}}+\cdots+\frac{A_{m} x+B_{m}}{\left(C x^{2}+d x+e\right)^{m}}
$$

to appear, (here $A_{1}, \ldots, A_{m}, B_{1}, \ldots, B_{m}$ are coefficients to be found).
E.9. Decompose $\frac{1}{(x+1)\left(x^{2}+x+1\right)}$ into partial fractions.

We wart to find $A, B, C \in \mathbb{R}$ such that

$$
\left.\begin{aligned}
& \frac{1}{(x+1)\left(x^{2}+x+1\right)}=\frac{A}{x+1}+\frac{B x+C}{x^{2}+x+1} \quad \forall x \neq-1 \Rightarrow \\
& A\left(x^{2}+x+1\right)+(B x+C)(x+1)=1 \quad \forall x \neq-1 \Rightarrow \\
& A x^{2}+A x+A+B x^{2}+B x+C x+C=1 \quad \forall x \neq-1= \\
& (A+B) x^{2}+(A+B+C) x+(A+C-1)=0 \quad \forall x \neq-1 \\
& A+B=0 \\
& A+B+C=0 \\
& A+C-1=0
\end{aligned} \right\rvert\, \begin{aligned}
& B=1 \\
& A=-1
\end{aligned}
$$

Therefore

$$
\frac{1}{(x+1)\left(x^{2}+x+1\right)}=\frac{1}{x+1}-\frac{x}{x^{2}+x+1}
$$

E.g. Examine the convergence of $\sum_{n=2}^{\infty} \frac{1}{n(n-1)(n+2)}$

We wont to find $A, B, C \in \mathbb{R}$ such that

$$
\begin{aligned}
& \frac{1}{n(n-1)(n+2)}=\frac{A}{n}+\frac{B}{n-1}+\frac{C}{n+2} \quad \forall n \geqslant 2 \Rightarrow \\
& A(n-1)(n+2)+B n(n+2)+C n(n-1)-1=0 \quad \forall n \geqslant 2 \Rightarrow \\
& A(x-1)(x+2)+B x(x+2)+C x(x-1)=1 \quad \forall x \in \mathbb{R}
\end{aligned}
$$

For $x=0: A \cdot(-1) \cdot 2=1 \quad \Rightarrow A=-1 / 2$
For $x=1: \quad 3 B=1 \quad \Rightarrow \quad B=1 / 3$
For $x=-2: \quad(-2) \cdot(-3) c=1 \Rightarrow c=1 / 6$
Thus $\frac{1}{n(n-1)(n+2)}=\frac{1}{3} \cdot \frac{1}{n-1}+\frac{1}{6} \cdot \frac{1}{n+2}-\frac{1}{2} \cdot \frac{1}{n}$

$$
\begin{aligned}
& =\frac{1}{3} \cdot\left(\frac{1}{n-1}-\frac{1}{n}\right)+\frac{1}{6}\left(\frac{1}{n+2}-\frac{1}{n}\right) \\
& =\frac{1}{3} \cdot\left(\frac{1}{n-1}-\frac{1}{n}\right)-\frac{1}{6}\left(\frac{1}{n}-\frac{1}{n+2}\right)
\end{aligned}
$$

The N th partial sum of the series is

$$
\begin{aligned}
S_{N}= & \sum_{n=2}^{N} \frac{1}{n(n-1)(n+2)}=\frac{1}{3} \sum_{n=2}^{N}\left(\frac{1}{n-1}-\frac{1}{n}\right)-\frac{1}{6} \sum_{n=2}^{N}\left(\frac{1}{n}-\frac{1}{n+2}\right) \\
= & \frac{1}{3}\left(\frac{1}{-2}-\frac{N}{2}+\frac{1}{2}-\frac{1}{3}+\cdots 7 \frac{1}{N-1}-\frac{1}{N}\right) \\
& -\frac{1}{6}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+\frac{1}{4}-\frac{1}{6}+\cdots+\frac{1}{N}-\frac{1}{N+2}\right)
\end{aligned}
$$

$$
=\frac{1}{3}\left(1-\frac{1}{N}\right)-\frac{1}{6}\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{N+1}-\frac{1}{N+2}\right)
$$

so when $N \rightarrow \infty$,

$$
\lim _{N \rightarrow \infty} S_{N}=\frac{1}{3} \cdot 1-\frac{1}{6} \cdot\left(\frac{1}{2}+\frac{1}{3}\right)=\frac{7}{36}
$$

Thus $\sum_{n=2}^{\infty} \frac{1}{n(n-1)(n+2)}=\frac{7}{36}$.
So for we have seen series of the form $\sum_{n=1}^{\infty} a_{n}$, where $\left(a_{n}\right)_{n=1}^{\infty}$ is a fixed sequence of real numbers.
A series of the form $\sum_{n=0}^{\infty} a_{n} x^{n} \quad(x \in \mathbb{R})$ is called, a power series.
Power series are functions of the variable x :

$$
\begin{equation*}
f(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \tag{*}
\end{equation*}
$$

A power series might converge for some values of $x \in \mathbb{R}$ and diverge for some others. E.g. the power series in $(*)$ converges for $x=0$. *A power series $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots$ coin be viewed as "a polynomial of infinite degree".

There exist functions with very well-known power series expansions:

1. $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots, x \in \mathbb{R}$.
2. $\quad \sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots, \quad x \in \mathbb{R}$
3. $\cos x=\sum_{n=0}^{\infty}(-1)^{n} \cdot \frac{x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\ldots, x \in \mathbb{R}$
4. $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+\ldots, \quad-1<x<1$.

Consider, for example, the first expansion:

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \quad, x \in \mathbb{R}
$$

This means that;

- the series $\sum_{n=0} \frac{x^{n}}{n!}$ converges for all $x \in \mathbb{R}$
- for all $x \in \mathbb{R}$, it converges to e^{x}.

The fourth power series $\sum_{n=0}^{\infty} x^{n}$ converges to $\frac{1}{1-x}$ for all $x \in(-1,1)$.
That means, that if I consider the function

$$
f(x)=\frac{1}{1-x}, \quad x \in(-\infty, 1) \cup(1, \infty)
$$

then $f(x)$ hos a power series expansion for all $x \in(-1,1)$, so not for all x in its clomain of definition.

In other words, the function

$$
g(x)=\sum_{n=0}^{\infty} x^{n}
$$

is well-defined for all $-1<x<1$
and $g(x)=f(x)$ for an $-1<x<1$
(but not for all x in the domain of f).
The power series of the form $\sum_{n=0}^{\infty} a_{n} x^{n}$ is called a Taylor series around 0
(or also a Mclaurin series)
If $f(x)$ has a Taylor sones $\sum_{n=0}^{\infty} a_{n} x^{n}$ then its Taylor polynomial of degree N will be $\sum_{n=0}^{N} a_{n} x^{n}$.

