For any $p \ge 1$, the series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is called the harmonic series of order p. We will show that for p=1 the harmonic series diverges. LEMMA 4.7: If a sequence $(X_n)_{n=1}^{\infty}$ converges to $l \in \mathbb{R}$, then every subsequence $(X_{k_n})_{n=1}^{\infty}$ also converges to $l \in \mathbb{R}$. PRODE Let (Xkn)n=1 be a subsequence of (Xn)n=1. Let E>D. Because Im Xn=l, there exists $n_0 \in \mathbb{N}$ such that $|X_n - \ell| < \varepsilon$ for all $n \ge n_0$. l -Since $k_n \ge n$ for any n=1/2,...therefore for all $n\ge n_0$, $k_n \ge n\ge n_0$ and thus IXkn - el< for all nZno.

THEOREM 4.8: The series
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 diverges.
PROOF
Let $(9n)_{n=1}^{\infty}$ be the sequence of partial sums,
i.e. $S_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$, $n = 1, 2, \dots$
By Lemma 4.7 its suffices to find a
subsequence of $(Sn)_{n=1}^{n}$ which diverges.
 $S_2^n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2^n}$
 $= 1 + \frac{4}{2^2} + (\frac{1}{3} + \frac{1}{4}) + (\frac{1}{5} + \frac{1}{6} + \frac{1}{4} + \frac{1}{8}) + \dots$
 $\dots + (\frac{1}{2^{n+1}+1} + \frac{1}{2^{n+2}+2} + \dots + \frac{1}{2^n})$
 $\ge 1 + \frac{1}{2} + (\frac{1}{4} + \frac{1}{4}) + (\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}) + \dots$
 $\dots + (\frac{1}{2^n} + \frac{1}{2^n} + \dots + \frac{1}{2^n})$
 $= 1 + \frac{1}{2} + \frac{2}{4} + \frac{4}{8} + \dots + \frac{2^{n-1}}{2^n}$
 $= 1 + \frac{1}{2} + \frac{2}{4} + \frac{4}{8} + \dots + \frac{2^{n-1}}{2^n}$

We say that
$$\sum_{n=1}^{\infty} a_n$$
 is a telescopic series
if $a_n = b_{n+1} - b_n$ for some sequence $(b_n)_{n=1}^{\infty}$.
If $\sum_{n=1}^{\infty} a_n$ is a telescopic series with
 $a_n = b_{n+1} - b_n$, $n = 1/2$,... and find $b_n = 1$ eR
then $\sum_{n=1}^{\infty} a_n$ converges.
Indeed, if $S_n = a_1 + a_2 + ... + a_n$
then
 $S_n = a_1 + a_2 + ... + a_n$
 $= (b_2 - b_1) + (b_3 - b_2) + ... + (b_{n+1} - b_1)$
 $= b_{n+1} - b_1$
 $- > l - b_1$.
E.g. Show that $\sum_{n=1}^{\infty} \frac{4}{n(n+1)}$ converges
and find its value.
 $\frac{1}{n(n+1)} = \frac{n+1-n}{n(n+1)} = \frac{4}{n} - \frac{4}{n+1}$
The N-th partial sum of the series is
 $S_N = \sum_{n=1}^{N} \frac{4}{n(n+1)} = \sum_{n=1}^{N} \left(\frac{4}{n} - \frac{4}{n+1}\right)$
 $= 1 - \frac{4}{2} + \frac{4}{2} - \frac{4}{3} + \dots + \frac{4}{N} - \frac{4}{N+1}$
 $= 1 - \frac{4}{N+1} \rightarrow 1$ as $N \rightarrow \infty$.

We have proved that
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$$
.
In the specific example of $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$
it was easy to soft that $\sum_{n=1}^{1} \frac{1}{n(n+1)}$
 $\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$.
We could have argued as follows:
We want to find coefficients $A, B \in \mathbb{R}$
such that
 $\frac{1}{x(x+1)} = \frac{A}{x} + \frac{B}{x+1}$ $\forall x \in \mathbb{R} \setminus \{0, -1\} \Rightarrow$
 $A(x+1) + Bx = 1$ $\forall x \in \mathbb{R} \setminus \{0, -1\} \Rightarrow$
 $(A + B) \times + (A - 1) = 0$ $\forall x \in \mathbb{R} \setminus \{0, -1\} \Rightarrow$
 $(A + B) \times + (A - 1) = 0$ $\forall x \in \mathbb{R} \setminus \{0, -1\} \Rightarrow$
 $A + B = 0$ $B = -1$.
Thus
 $\frac{1}{x(x+1)} = \frac{1}{x} - \frac{1}{x+1}$
and we could proceed with the
fortial sums ...

This is a special case of the partial fraction decomposition. Let $f(X) = \frac{P(X)}{\varphi(X)}$, $\deg P < \deg \varphi$. The denom. (P(x) can always be factorised as a product of polynomials of 1st and 2nd degree, say $\Phi(\mathbf{X}) = (a_1 \mathbf{X} + b_1)^{h_1} \cdot \dots \cdot (a_k \mathbf{X} + b_k)^{h_k} \cdot \dots \cdot (a_k \mathbf{X} + b_k)^{h_k} \cdot \dots \cdot (a_k \mathbf{X} + b_k)^{h_k} \cdot \dots \cdot (a_k \mathbf{X} + d_k \mathbf{X} + e_k)^{h_k} \cdot \dots \cdot (a_k \mathbf{X} + d_k \mathbf{X} + d_k$ · We want to decompose P(X) as a sum of froletons $\phi(x)$ with denominators 91×+b1, ..., 92×+b2, 91×+01×+e1, ..., 92×+dexte · For each factor (ax+b)^h We want the terms A_{1}^{2} A_{2}^{2} A_{2}^{2} A_{2}^{2} A_{2}^{2} A_{2}^{2} A_{3}^{2} A_{4}^{2} A_{4}^{2} for each factor $(cx^2+dx+e)^m$ We want the terms $\frac{A_1 \times + B_1}{C \chi^2 + d \chi + e} + \frac{A_2 \times + B_2}{(c \chi^2 + d \chi + e)^2} + \cdots + \frac{A_m \times + B_m}{(c \chi^2 + d \chi + e)^m}$ to appear (here A1,.., Am, B1,.., Bm are coefficients to be found).

E.g. Decompose 1 into partial fractions. (X+1)(X²+X+1) We want to find A, B, CEIR such that $\frac{1}{(x+1)(x^2+x+1)} = \frac{A}{x+1} + \frac{Bx+C}{x^2+x+1} \quad \forall x \neq -1 \implies$

A + B = D	A = 1
A + B + C = O	B = -1
A + C - 1 = 0	G = O

Therefore $\frac{1}{(X+1)(\chi^2+\chi+1)} = \frac{1}{\chi+1} - \frac{\chi}{\chi^2+\chi+1}$

E.g. Examine the convergence of
$$\sum_{n=2}^{\infty} \frac{1}{n(n-1)(n+2)}$$

We want to find A, B, C E R such that

$$\frac{1}{n(n-1)(n+2)} = \frac{A}{n} + \frac{B}{n-1} + \frac{C}{n+2} \quad \forall n \ge 2 \implies$$

$$A(n-1)(n+2) + Bn(n+2) + Cn(n-1) - 1 = 0 \quad \forall n \ge 2 \implies$$

$$A(x-1)(x+2) + B \times (x+2) + C \times (x-1) = 1 \quad \forall x \in \mathbb{R}$$
For $x=0$: $A \cdot (-1) \cdot 2 = 1 \implies A = -\frac{1}{2}$
for $x=0$: $A \cdot (-1) \cdot 2 = 1 \implies A = -\frac{1}{2}$
for $x=0$: $A \cdot (-1) \cdot 2 = 1 \implies B = \frac{1}{3}$
for $x=-2$: $(-2) \cdot (-3) C = 1 \implies C = \frac{1}{3}$.
Thus $\frac{1}{n(n-1)(n+2)} = \frac{1}{3} \cdot \frac{1}{n-1} + \frac{1}{6} \cdot \frac{1}{n+2} - \frac{1}{2} \cdot \frac{1}{n}$

$$= \frac{1}{3} \cdot \left(\frac{1}{n-1} - \frac{1}{n}\right) + \frac{1}{6} \left(\frac{1}{n+2} - \frac{1}{n}\right)$$

$$= \frac{1}{3} \cdot \left(\frac{1}{n-1} - \frac{1}{n}\right) - \frac{1}{6} \left(\frac{1}{n} - \frac{1}{n+2}\right)$$
The N-th partial sum of the series is
 $S_N = \sum_{n=2}^{N} \frac{1}{n(n-1)(n+2)} = \frac{1}{3} \cdot \sum_{n=2}^{N} \left(\frac{1}{n-1} - \frac{1}{n}\right) - \frac{1}{6} \cdot \sum_{n=2}^{N} \left(\frac{1}{n} - \frac{1}{n+2}\right)$

$$= \frac{1}{3} \cdot \left(\frac{1}{2} - \frac{1}{4} + \frac{1}{3} - \frac{1}{5} + \frac{1}{4} - \frac{1}{6} + \frac{1}{N} + \frac{1}{N+2}\right)$$

$$= \frac{1}{3} \left(1 - \frac{1}{N}\right) - \frac{1}{6} \left(\frac{1}{2} + \frac{1}{3} - \frac{1}{N+1} - \frac{1}{N+2}\right),$$

so when $N \rightarrow \infty$,
 $\lim_{N \to \infty} S_N = \frac{1}{3} \cdot 1 - \frac{1}{6} \cdot \left(\frac{1}{2} + \frac{1}{3}\right) = \frac{7}{36},$
Thus $\sum_{n=2}^{\infty} \frac{1}{n(n-1)(n+2)} = \frac{7}{36}.$
So for we have seen series of the form
 $\sum_{n=1}^{\infty} a_n$, where $(a_n)_{n=1}^{n-3}$ is a fixed sequence
of real numbers.
A series of the form $\sum_{n=0}^{\infty} a_n x^n$ (x eIR)
is called a power series.
Power series are functions of the
Variable X:
 $f(x) = \sum_{n=0}^{\infty} a_n x^n$ (*)
A power series might converge for some
value) of xeIR and diverge for some others.
E.g. the power series in (*) converges for $k=0$.
*A power series $f(x) = \sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + ...$
Can be viewed as "a polynomial of
infinite degree".

There exist functions with very Well-known
Power series expansions:
1.
$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots , x \in \mathbb{R}$$
.
2. $\sin x = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \dots , x \in \mathbb{R}$
3. $\cos x = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n}}{(2n)!} = 1 - \frac{x^{3}}{2!} + \frac{x^{4}}{4!} - \dots , x \in \mathbb{R}$
4. $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^{n} = 1 + x + x^{2} + \dots , -1 < x < 1$.
Consider, for example, the first expansion:
 $e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{2!} - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \dots$

This means that:
• the series
$$\sum_{n=1}^{\infty} \frac{1}{n!}$$
 converges to an $x \in \mathbb{R}$
• for all $x \in \mathbb{R}$, it converges to e^{x} .

The fourth power series $\sum_{n=0}^{N}$ converges to $\frac{1}{1-x}$ for all $x \in (-1,1)$. That means, that if I consider the $f(X) = \frac{1}{1-X}, \quad \chi \in (-\infty, 1) \cup (1, \infty)$ function then f(x) has a power series expansion for all $x \in (-1, 1)$, so not for all x in its clomain of definition. In other words, the function $g(x) = \sum_{n=1}^{\infty} x^n$ is well-defined for all -1 < x < 1and g(x) = f(x) for all -1 < x < 1(but not for all x in the domain of f). The power series of the form $\sum_{n=b}^{\infty} a_n x^n$ is called a Taylor series around 0 m=b(or also a McLaurin series). If f(x) has a Taylor series Zanx^h then its Taylor polynomial of degree N will be Zanxⁿ.