Here we deal with real functions of a real varbible, that is, functions of the form $f: A \rightarrow \mathbb{R}$, where $A \subseteq \mathbb{R}$.

- When $f: A \rightarrow \mathbb{R}$ is a function, then f stands for the function itself, but $f(x)$ is a real number.
(These are 2 different things)
However, very often he soy little function $f(x)^{\prime \prime}$ to refer to the function

$$
\begin{aligned}
f: A & \rightarrow \mathbb{R}, \\
x & \mapsto f(x) .
\end{aligned}
$$

- Suppose we are given some function f We assume that the domain of f is the largest possible subset of such that $f(x)$ is well-defined (unless otherwise stated).
E.g. when we are given $f(x)=\sqrt{x-1}$ then we assume that $D_{f}=[1, \infty)$ of course, someone could define the functor $g:[2,3] \rightarrow \mathbb{R}$,

$$
g(x)=\sqrt{x-1}, \quad x \in[2,3] .
$$

If $f: A \rightarrow \mathbb{R}$ is a function. The graph of f is the set

$$
G(f)=\{(x, f(x)): x \in A\} \subseteq \mathbb{R}^{2}
$$

- When re project $G(f)$ on the horizontal axis, he get A.
- When we project $G(f)$ on the vertical axis, we get $f(A)$
Given two functions $f: D_{f} \rightarrow \mathbb{R}, g: D_{g} \rightarrow \mathbb{R}$ we can define new functions

$$
f+g, f-g, f \cdot g, \frac{f}{g}
$$

as follows:

$$
\begin{aligned}
& f+g: D_{f} \cap D_{g} \rightarrow \mathbb{R},(f+g)(x)=f(x)+g(x) \\
& f-g: D_{f} \cap D_{g} \rightarrow \mathbb{R},(f-g)(x)=f(x)-g(x) \\
& f \cdot g: D_{f} \cap D_{g} \rightarrow \mathbb{R},(f \cdot g)(x)=f(x) \cdot g(x) \\
& \frac{f}{g}:\left(D_{f} \cap D_{g}\right) \backslash\{x: g(x)=0\} \rightarrow \mathbb{R},\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}
\end{aligned}
$$

Let $f: D_{f} \rightarrow \mathbb{R}, g: D_{g} \rightarrow \mathbb{R}$ be two functions. We define the composition of f with g and he denote it as $f \circ g$, as follows:

$$
\begin{aligned}
& D_{f \circ g}=\left\{x \in D_{g}: g(x) \in D_{f}\right\} . \\
& (f \circ g)(x)=f(g(x)) \text { for all } x \in D_{f \circ g} \text {. }
\end{aligned}
$$

E.g. if $f(x)=\frac{1}{x}, g(x)=\ln x$ then we can find fog and gof.

$$
\begin{aligned}
& D_{f}=\mathbb{R} \backslash\{0\}=(-\infty, 0) \cup(0, \infty) \\
& \begin{aligned}
D_{g}= & (0,+\infty) \\
& =\left\{x \in D_{g}: g(x) \in D_{f}\right\} \\
& =\{x \in(0, \infty): \ln x \neq 0\} \\
& =\{x \in(0, \infty): x \neq 1\} \\
& =\{0,1) \cup(1,+\infty) .
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
(f \circ g)(x) & =f(g(x))=\frac{1}{\ln x} \text { for all } x \in(0,1) \cup(1, \infty) . \\
D_{g \circ f} & =\left\{x \in D_{f}: f(x) \in D_{g}\right\} \\
& =\left\{x \neq 0: \frac{1}{x}>0\right\} \\
& =(0, \infty) . \\
(g \circ f)(x) & =g(f(x))=\ln \frac{1}{x}=-\ln x, \text { for all } x>0 .
\end{aligned}
$$

This shows that fog and gof are not in general the same function. (In the previous example, they did not even have the same domain of definition).
A function $f: X \rightarrow Y$ is called $1-1$ (or invertible) if for all $x_{1}, x_{2} \in \bar{X}$:

$$
x_{1} \neq x_{2} \Rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)
$$

(I.e. different elements in the domain x are mapped onto different elements in $f(X)$).
E.g. take $h: \mathbb{R} \rightarrow \mathbb{R}, h(x)=x^{4}$ This is not $1-1$, because $2 \neq-2$ but $h(2)=h(-2)=16$.

When we have the graph of a real function $f: A \rightarrow \mathbb{R}$, we can understand if it is 1-1 or not as follows:
f is 1-1 if and only if every line parallel to the x-axis intersects the graph of f at at most one point.

* A function f is not 1-1 if there exist $x_{1}, x_{2} \in D_{f}$ with

$$
x_{1} \neq x_{2} \text { and } f\left(x_{1}\right)=f\left(x_{2}\right) \text {. }
$$

Suppose $f: X \rightarrow Y$ is a 1-1 function. Then we con define a new function

$$
f^{-1}: f(X) \rightarrow X
$$

which maps every $y \in f(x)$ to the unique $x \in X$ such that $f(x)=y$.

$$
\left.\begin{array}{rl}
f^{-1}: & f(x)
\end{array}\right)
$$

The function f^{-1} is cooled the inverse function of f.

E.g. if $f: \mathbb{R} \rightarrow(0, \infty), \quad f(x)=e^{x}$ Then $f^{-1}:(0, \infty) \rightarrow \mathbb{R}, f^{-1}(x)=\ln x$.
Also if $g: \mathbb{R} \rightarrow \mathbb{R}, g(x)=x^{2}, x \in \mathbb{R}$ then g is $\operatorname{NOT} 1-1 \quad(g(1)=g(-1))$. But if we consider

$$
h:[0, \infty) \rightarrow[0, \infty), h(x)=x^{2}
$$

then this function is 1-1, and its inverse function is

$$
h^{-1}:[0, \infty) \rightarrow[0, \infty), \quad h^{-1}(x)=\sqrt{x}
$$

Generally, if $f: X \rightarrow Y$ is $1-1$ (so that $f^{-1}: f(X) \rightarrow X$ is nell-defined) then

$$
\begin{array}{ll}
f^{-1}(f(x))=x & \text { for all } x \in X \\
f\left(f^{-1}(y)\right)=y & \text { for all } y \in f(x) .
\end{array}
$$

$$
\begin{aligned}
& y=f(x) \Leftrightarrow x=f^{\prime}(y) \\
& f^{-1}(f(x))=x \text { for all } x \in X \\
& f\left(f^{-1}(y)\right)=y \text { br all } y \in f(x) .
\end{aligned}
$$

The two last relations show that the compositions $f^{-1} \circ f$ and $f \circ f^{-1}$ are equal to the "identity function" (the function which maps every element on itself) on the sets X and $f(X)$, respectively.
So f^{-1} is the "inverse" of f with respect to tee operation "O" of composition of functions.
Example: $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=e^{2 x+1}-1$ f is invertible because

$$
\begin{aligned}
f\left(x_{1}\right)=f\left(x_{2}\right) & \Leftrightarrow e^{2 x_{1}+1}-1=e^{2 x_{2}+1}-1 \\
& \Leftrightarrow e^{2 x_{1}+1}=e^{2 x_{2}+1} \\
& \Leftrightarrow x_{1}=x_{2} .
\end{aligned}
$$

What is the range of f_{9} ?

$$
\begin{aligned}
y=f(x) & \Leftrightarrow y=e^{2 \dot{x}+1}-1 \\
& \Leftrightarrow y+1=e^{2 x+1}
\end{aligned}
$$

This can have a solution in y if and only if $y+1>0 \Longleftrightarrow y>-1$.

This means that $f(\mathbb{R})=(-1,+\infty)$.
For any $y>-1$,

$$
\begin{aligned}
y=f(x) & \Leftrightarrow y+1=e^{2 x+1} \\
& \Leftrightarrow 2 x+1=\ln (y+1) \\
& \Leftrightarrow x=\frac{1}{2} \ln (y+1)-\frac{1}{2}
\end{aligned}
$$

So the inverse of f is

$$
f^{-1}:(-1, \infty) \rightarrow \mathbb{R}, \quad f^{-1}(y)=\frac{1}{2} \ln (y+1)-\frac{1}{2}
$$

2. LIMITS AND CONTINUITY

- UPPER \& lower bounds - supremum a infimum

Let $A \subseteq \mathbb{R}$. We say that A is
(i) bounded from above if there exists some $M \in \mathbb{R}$ such that
$a \leqslant M$ for any $a \in A$.
(ii) bounded from below if there exists some $m \in \mathbb{R}$ such that
$a \geqslant m$ for any $a \in A$.
(iii) bounded, if it is bounded both from above and below.
In the previous definitions, the numbers M, m are called upper and lower bounds for the set A, respectively.
PROPOSITION 2.1: The set $A \subseteq \mathbb{R}$ is bounded of and only if there exists some $M>0$ such that
$|a| \leqslant M$ for all $a \in A$.

PROPOSITION 2.1: The set $A \subseteq \mathbb{R}$ is bounded of and only if there exists some $M>0$ such that
$|a| \leqslant M$ for all $a \in A$.
PROOF
\Rightarrow : Assume A is bounded. There exist $M_{1}, M_{2} \in \mathbb{R}$ such that

$$
M_{2} \leq a \leq M_{1} \text {, for all } a \in A
$$

Set $M=\max \left\{\left|M_{1}\right|,\left|M_{2}\right|\right\}$, then:

