THEOREM 3.5 (Mean Value Theorem, Lagrange): Let f: [a, b] -> IR. Then if • f is continuous on [a,b] . f is differentiable on (a, b) then there exists $x_b \in (a, b)$ with $f'(x_b) = \frac{f(b) - f(a)}{b - a}$. PRODF Set $g(x) = f(x) - \frac{f(b) - f(a)}{b - a} (x - a)$. Then q is continuous on [a,b] and differentiable on (a,b) with g(a) = g(b) = f(a). So by Rolle's theorem there exists $X \in (a, b)$ with $g'(x) = 0 \implies f'(x) = \frac{f(b) - f(a)}{b - b}$. Geometrically, the MTV states that there exists at least one point (20, f(20)) where the tangent line at the graph _____ of f is parallel to the segment from A(a,f(a)) to B(b,f(b)).

Let
$$f: I \rightarrow IR$$
, ISIR an interval.
The function f is called:
(i) increasing on I, if for all xiy $\in I$
 $X < Y \rightarrow f(X) \leq f(Y)$.

(ii) strictly increasing on I, if for all $xy \in I$ $X < y \implies f(x) < f(y)$.

(iii) decreasing on I, if for all $x, y \in I$ $x < y \implies f(x) \gg f(y)$

(iv) <u>strictly</u> decreasing on I, if for all $x,y \in I$ $x < y \implies f(x) > f(y)$.

Also f is called <u>monotonic</u> or <u>strictly monotonic</u> if it is either decreasing or increasing (and strictly Incr. or strictly decr., respectively).

* Sometimes f is called non-decreasing instead of increasing, and also increasing instead of strictly increasing.

THEOREM 3.6: Let f:I-JIR, ISIR an interval, be differentiable in the intervol of I. (i) If f(x) >0 for all X, then
is strictly increasing on I.
(ii) If f(x) >0 for all X (in the int. of I) then f is increasing on I.
(iii) If f(x) <0 for au X, then
f is strictly decreasing on I.
(iv) If f(x) <0 for all X, then
f is strictly decreasing on I.
(N) If f(x) <0 for all X, then
f is decreasing on I. f PROOF (i) Take X, y EI with X < y. We need to prove that f(X) < f(y). By the Mean Value Theorem, there exists $\chi \in (x,y)$ with $f(\chi) = \frac{f(y) - f(x)}{y - x}$ By the hypothesis, $f(x_{n}) > 0 \implies f(y) - f(x) > 0 \implies f(x) < f(y).$ y - x(ii), (iii), (v) : Similar. * A constant function f(x) = c (x $\in I$) is both increasing and decreasing, but neither strictly incr. nor strictly dec.

Example: $f(x) = \frac{e^x}{x}$, $x \in (0, \infty)$ Then $f'(x) = \frac{xe^x - e^x}{x^2} = \frac{x-1}{x^2}e^x$. $f'(z) = 0 \iff x = 1 \qquad x = 1 \qquad x = 1 \qquad +\infty$ $f'(x) > 0 \iff X > 1 \qquad f'(x) \qquad - \qquad 0 \qquad + \qquad +\infty$ $f'(x) < 0 \iff x < 1 \qquad f(x) \qquad - \qquad 0 \qquad + \qquad + \qquad +\infty$ $f(x) < v \iff x < 1$. f is strictly decreasing in (0,1] and strictly increasing in [1,3). f has a local minimum at x=1, which is f(1) = e. This is also a global minimum. The converse to Theorem 3.6 is not true, i.e. if f is strictly increasing, this does not necessarily imply that f'(x) > 0 for all x. Take for example $f(x) = x^3$. f is strictly increasing on IR, but /y=x³

If
$$f(x_0) > 0$$
 for some $x \in \mathbb{R}$,
does that automatically imply that
 f is increasing on some interval around x ?
The answer is NO. Take for example
 $f(x) = \begin{cases} x + 2x^2 \sin(\frac{1}{x}), & x \neq 0\\ 0, & x = 0 \end{cases}$
Then f is differentiable on R, with
 $f'(x) = \begin{cases} 1 + 4x \sin(\frac{1}{x}) - 2\cos(\frac{1}{x}), & z \neq 0\\ 1, & x = 0 \end{cases}$
We have $f'(0) = 1 > 0$
but f is not increasing on any
interval of the form $(-S_{1}S)$.
THEOREM 3.7 Let $f: I \rightarrow \mathbb{R}$ be continuous
on the interval I and differentiable in
the interval of for all x in the hold of I.
If $f(x) = 0$ for all x in the hold of I.
PRODE
Let $x, y \in I$ with $x < y$.
By the Mean Value Theorem,
 $J - x$

But
$$f'(t) = 0 \Rightarrow \frac{f(y) - f(x)}{y - x} = 0 \Rightarrow f(x) = f(y)$$
.
* In d previous counterexample,
We used the function
 $f(x) = \begin{cases} x + 2x^2 \sin(\frac{1}{x}), x \neq 0 \\ 0, x = 0. \end{cases}$
How did we calculate $f'(0)$?
 $\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{x + 2x^2 \sin(\frac{1}{x})}{x}$
 $= \lim_{x \to 0} (1 + 2x \sin(\frac{1}{x})) = 1$
because $(x \sin(\frac{1}{x})) \leq (x) \Rightarrow$

Therefore this means that f is diff. at 0 with f(0)=1.

(I an interval) be continuous and f(X)=g'(X) for all X in the int. of I. Then f(X) = g(x) + C for all $X \in I$ (where $C \in IR$ is a constant.) Example: Prove that $\arctan(\frac{1}{X}) = \frac{1}{2} - \arctan(x, x)$ • Set $h(x) = \arctan(\frac{1}{x}) + \arctan(x)$, $x \in (0, \infty)$. (I choose h that way because we actually have to show that this function is constant and equal to $\frac{\pi}{2}$). Then $h'(x) = \frac{1}{1 + \left(\frac{1}{x}\right)^2} \cdot \left(-\frac{1}{x^2}\right) + \frac{1}{1 + x^2} = 0$ so h(x) = c for all x > 0. We can evaluate the constant c: $c = h(1) = 2 \arctan 1 = \frac{\pi}{2}.$ So, for all $x \gg :$ $h(x) = \frac{1}{2} \implies$ arcton $\left(\frac{1}{x}\right) = \frac{1}{2} - \operatorname{virctwn} x$.

REMARK: Theorem 3.7 can only be applied on intervals. Consider the function g: IR120f -> IR, $\partial(\mathbf{X}) = \begin{cases} \mathbf{1} , \mathbf{X} > \mathbf{0} \\ -\mathbf{L} , \mathbf{X} < \mathbf{0} \end{cases},$ Then g'(x) = 0 for all $x \in (-\infty, 0) \cup (0, \infty)$ but g is not equal to a constant on $R(\{0\})$. This is because IR 1207 is not an interval and we cannot apply Thm 3.7. THEOREM 3.9 (Generalised Mean Value Theorem, Cauchy): Let f,g: [4,b] -> R, If: · t, g are cont. on Ex, bi • f, g are diff. in (a, b) • $g'(x) \neq 0$ for all $x \in (a, b)$ then there exists $x \in (a, b)$ such that, $\frac{f(x_0)}{g'(x_0)} = \frac{f(b) - f(a)}{g(b) - g(a)}$ PRUDF Apply Rolle's Theorem to $h: [a, b] \rightarrow \mathbb{R}$, h(x) = (g(b) - g(a))f(x) - (f(b) - f(a))g(x).

THEOREM 3.10 (de l'Hospital): If f,g
are differentiable on some interval
around
$$\chi_0$$
 (χ_0 is real or $\pm \infty$) and
. lim $f(x) = \lim_{x \to \chi_0} g(x) = 0$
 $\chi \to \chi_0$
. lim $f(x) = L$ (L is real or $\pm \infty$)
 $\chi \to \chi_0$ $g(x)$
then also $\lim_{x \to \chi_0} \frac{f(x)}{g(x)} = L$.
(This applies to both "regular" limits
and also side limits).
PROOF
• We first deal with the case of
a right side-limit.
Suppose f,g are diff. on (χ_0 , b].
Define
 $F(x) = \begin{cases} f(x), \chi_0 < x \le b, \\ 0, x = \chi_0, \end{cases}$
Let $\chi_0 < \chi < b$.
Then applying Theorem 3.9
 $\chi = t_x \in (\chi_0, \chi)$ with

 $\frac{F'(t_x)}{G'(t_x)} = \frac{F(x) - F(x_0)}{G(x) - G(x_0)} \implies \frac{f'(t_x)}{g'(t_x)} = \frac{f(x)}{g(x)}$ When $X \rightarrow \chi_{2}^{+}$, then also $t_{X} \rightarrow \chi_{2}$. Thus $\lim_{X \to x^+} \frac{f'(t_X)}{g'(t_X)} = \lim_{X \to x_0} \frac{f(x)}{g(x)} \Longrightarrow$ $\lim_{X \to x_0} \frac{f(X)}{g(X)} = \lim_{X \to x_0} \frac{f'(X)}{g'(X)} = L.$ · For the case of a left-side limit Ne work similarly.
The case of a tro-sided limits
follows from the side limits.
It remains to deal with the case when $X_h = \pm \infty$. Set $f_1(x) = f(\frac{1}{x})$, $g_1(x) = g(\frac{1}{x})$, 0 < x < a. Apply the proof for the right side-limits at 0 and observe that $\lim_{X \to 0^+} \frac{f'(x)}{g'_1(x)} = \lim_{X \to 0^+} \frac{f'(\frac{1}{x})(-\frac{1}{x^2})}{g'(\frac{1}{x}) \cdot (-\frac{1}{x^2})} = \lim_{Y \to \infty} \frac{f'(y)}{g'(y)} = L.$

The same conclusion is also true. when dealing with indefinite limits of the form $\frac{\pm c_0}{\pm c_0}$ (proof omitted). E.g., Find lim x X. $\chi^{\sqrt{X}} = e^{\log \chi^{\sqrt{X}}} = e^{\sqrt{\chi}\log X}$ Now lim VX log × = lim log × X+ot ×+ot 1 $= \lim_{X \to 0^+} \frac{\underline{A}}{-\underline{A}} = 0$ $\lim x^{\sqrt{x}} = e^{\circ} = 1$ So