THEOREM 3.5 (Mean Value Theorem, Lagrange):
Let $f:[a, b] \rightarrow \mathbb{R}$. Then if

- f is continuous on $[a, b]$
- f is differentiable on (a, b) then there exists $x_{0} \in(a, b)$ with

$$
f^{\prime}\left(x_{0}\right)=\frac{f(b)-f(a)}{b-a}
$$

PROOF

$$
\text { Set } g(x)=f(x)-\frac{f(b)-f(a)}{b-a}(x-a) \text {. }
$$

Then g is continuous on $[a, b]$ and differentiable on (a, b)
with $g(a)=g(b)=f(a)$.
So by Rolle's theorem there exists $x_{0} \in(a, b)$ with

$$
g^{\prime}\left(x_{0}\right)=0 \Rightarrow f^{\prime}\left(x_{0}\right)=\frac{f(b)-f(a)}{b-a} .
$$

Geometrically, the MTV states that there exists at least one point $\left(x_{0}, f\left(x_{0}\right)\right)$ where the tangent line at the graph of f is parallel to the segment
 from $A(a, f(a))$ to $B(b, f(b))$.

Let $f: I \rightarrow \mathbb{R}, \quad I \subseteq \mathbb{R}$ an interval.
The function f is called:
(i) increasing on I, 'if for all $x, y \in I$

$$
x<y \Rightarrow f(x)^{\prime} \leqslant f(y)
$$

($i i^{\circ}$) Strictly increasing on I, if for all $x y \in I$

$$
x<y \quad \Rightarrow \quad f(x)<f(y)
$$

(iii) decreasing on I, if for all $x, y \in I$

$$
x<y \Rightarrow f(x) \geqslant f(y)
$$

(iv) Strictly decreasing on I, if for all $x, y \in I$

$$
x<y \Rightarrow f(x)>f(y)
$$

Also f is called monotonic or strictly monotonic if it is either decreasing or increasing (and strictly incr. or strictly decry., respectively).

* Sometimes f is called non-decreasing instead of, increasing, and also increasing instead of strictly increasing.

THEOREM 3.6 : Let $f: I \rightarrow \mathbb{R}, I \leq \mathbb{R}$ an internal, be differentiable in the interbr of I.
(i) If $f^{\prime}(x)>0$ for all x, then f is strictly increasing on I.
(ii) If $f^{\prime}(x) \geqslant 0$ for all x (in the int. of I) then f is increasing on I.
(iii) If $f^{\prime}(x)<0$ for all x, then f is strictly decreasing on I.
(iv) If $f^{\prime}(x) \leqslant 0$, for all x, then PROD f is decreasing on I.
(i) Take $x, y \in I$ with $x<y$

We need to prove that $f(x)<f(y)$
By the Mean Value Theorem, there exists $x_{0} \in(x, y)$ with

$$
f^{\prime}\left(x_{0}\right)=\frac{f(y)-f(x)}{y-x}
$$

By the hypothesis's,

$$
f^{\prime}\left(x_{0}\right)>0 \Rightarrow \frac{f(y)-f(x)}{y-x}>0 \Rightarrow f(x)<f(y)
$$

(ii), (iii), (v): Similar.

* A constant function $f(x)=c \quad(x \in I)$ is both increasing and decreasing but neither strictly incr. hor strictly dec.

Example: $\quad f(x)=\frac{e^{x}}{x}, x \in(0, \infty)$
Then $f^{\prime}(x)=\frac{x e^{x}-e^{x}}{x^{2}}=\frac{x-1}{x^{2}} e^{x}$.

$$
\begin{aligned}
& f^{\prime}(x)=0 \Leftrightarrow x=1 \\
& f^{\prime}(x)>0 \Leftrightarrow x>1 \\
& f^{\prime}(x)<0 \Leftrightarrow x<1 .
\end{aligned} f^{\prime}(x) \quad f^{0} \quad 1 \quad+\quad+\infty+
$$

f is strictly decreasing in $(0,1]$ and strictly increasing in $[1, \infty)$.
f has a local minimum at $x=1$, which is $f(1)=e$.
This is also a global minimum.
The converse to Theorem 3.6 is not true, i.e. If f is strictly increasing, this does not necessarily imply that $f^{\prime}(x)>0$ for all x_{3}.
Take for example, $f(x)=x^{3}$.
f is strictly increasing on \mathbb{R}, but $f^{\prime}(0)=0$.

If $f^{\prime}\left(x_{0}\right)>0$ for some $x_{0} \in \mathbb{R}$, does that automatically imply that f is increasing on some intemal around x_{0} ?
The answer is NO. Take for example

$$
f(x)= \begin{cases}x+2 x^{2} \sin \left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x=0\end{cases}
$$

Then f is differentiable on \mathbb{R}, with

$$
f^{\prime}(x)= \begin{cases}1+4 x \sin \left(\frac{1}{x}\right)-2 \cos \left(\frac{1}{x}\right), & x \neq 0 \\ 1 & x=0\end{cases}
$$

We have $f^{\prime}(0)=1>0$
but f is not increasing on any interval of the form $\left(-\delta_{1} \delta\right)$.

THEOREM 3.7 : Let $f: I \rightarrow \mathbb{R}$ be continuous on the interval I and differentiable in the interior of I.

If $f^{\prime}(x)=0$ for all x in the int. of I then $f(x)=C$ for all $x \in I$.
PROOF
Let $x, y \in I$ with $x<y$.
By the Mean value Theorem, $\exists t \in(x, y)$ such that $f^{\prime}(t)=\frac{f(y)-f(x)}{y-x}$.

But $f^{\prime}(t)=0 \Rightarrow \frac{f(y)-f(x)}{y-x}=0 \Rightarrow f(x)=f(y)$.

* In a Previous counterex x mole, we used the function

$$
f(x)= \begin{cases}x+2 x^{2} \sin \left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x=0\end{cases}
$$

How did we calculate $f^{\prime}(0)$?

$$
\begin{array}{r}
\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{x+2 x^{2} \sin \left(\frac{1}{x}\right)}{x} \\
\quad=\lim _{x \rightarrow 0}\left(1+2 x \sin \left(\frac{1}{x}\right)\right)=1
\end{array}
$$

because $\left|x \sin \left(\frac{1}{x}\right)\right| \leqslant(x) \Rightarrow$
and $\quad-|x| \leqslant x \sin \left(\frac{1}{x}\right) \leqslant|x| ~ 子=\lim _{x \rightarrow 0}\left[x \sin \left(\frac{1}{x}\right)\right]=0$.
Therefore this means that f is diff. at 0 with $f^{\prime}(0)=1$.
$\frac{\text { COROLLARY } 3.8}{(I}$: Let $f, g: I \rightarrow \mathbb{R}$ (I an internal) be continuous and $f^{\prime}(x)=g^{\prime}(x)$ for all x in the int. of I.
Then $f(x)=g(x)+c$ for all $x \in I$ (where $c \in \mathbb{R}$ is a constant.)

Example: Prove that $\arctan \left(\frac{1}{x}\right)=\frac{\Gamma}{2}-\arctan x, x>0$.

- Set $h(x)=\arctan \left(\frac{1}{x}\right)+\arctan x, \quad x \in(0, \infty)$.
(I choose h that way because we actually have to show that this function is constant and equal to $\frac{n}{2}$).
Then $h^{\prime}(x)=\frac{1}{1+\left(\frac{1}{x}\right)^{2}} \cdot\left(-\frac{1}{x^{2}}\right)+\frac{1}{1+x^{2}}=0$
so $h(x)=0$ for all $x>0$.
We can evaluate the constant c :

$$
0=h(1)=2 \arctan 1=\frac{\pi}{2}
$$

So, for all $x>0$: $h(x)=\frac{n}{2} \Rightarrow$

$$
\arctan \left(\frac{1}{x}\right)=\frac{\pi^{2}}{2}-\arctan x
$$

REMARK: Theorem. 3.7 can only be applied on intervals.
Consider the function $g: \mathbb{R} \backslash\{$ of $\rightarrow \mathbb{R}$,

$$
g(x)=\left\{\begin{aligned}
1, & x>0 \\
-1, & x<0
\end{aligned}\right.
$$

Then $g^{\prime}(x)=0$ for all $x \in(-\infty, 0) \cup(0, \infty)$ but g is not equal to a constant on R t tot.

This is because $\mathbb{R} \backslash\{$ of is not an interval and we cannot apply 3 hm 3.7.

THEOREM 3.9 (Generalised Mean Value
Theorem, Cauchy): Let $f, g:[b, b] \rightarrow \mathbb{R}, I f$:

- $f, 8$ are cont. on $[4, b]$
- f, gog are diff. in (a, b)
- $g^{\prime}(x) \neq 0$ for all $x \in(a, b)$
then there exists $x_{0} \in(a, b)$
such that,

$$
\frac{f^{\prime}\left(x_{0}\right)}{g^{\prime}\left(x_{0}\right)}=\frac{f(b)-f(a)}{g(b)-g(a)}
$$

PROOF
Apply Rale's Theorem to $h:[a, b] \rightarrow \mathbb{R}$,

$$
h(x)=(g(b)-g(a)) f(x)-(f(b)-f(a)) g(x) .
$$

THEOREM 3.10 (de l'Hospitwl) : If fig are differentiable on sone internal around x_{0} (x_{0} is real or $\pm \infty$) and
a $\lim _{x \rightarrow x_{0}} f(x)=\lim _{x \rightarrow x_{0}} g(x)=0$

- $\lim _{x \rightarrow x_{0}} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L \quad$ (L is real or $\pm \infty$)
then also $\lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=L$.
(This applies to both "regular" limits and also side limits).
PROOF
- We first deal with the case of a right side-limit.
Suppose f, g are diff. on $\left(x_{0}, b\right]$.
Define

$$
\begin{aligned}
& F(x)=\left\{\begin{array}{ll}
f(x), & x_{0}<x \leqslant b, \\
0, & x=x_{0}
\end{array}, \quad G(x)= \begin{cases}g(x), & x_{0}<x \leqslant b \\
0, & x=x_{0} .\end{cases} \right. \\
& t_{x} x
\end{aligned}
$$

to F, G on $\left[x_{0}, x\right]$-note that they are both continuous) - there exists some

$$
t=t_{x} \in\left(x_{0}, x\right) \text { with }
$$

$$
\frac{F^{\prime}\left(t_{x}\right)}{G^{\prime}(t x)}=\frac{F(x)-F\left(x_{0}\right)}{G(x)-G\left(x_{0}\right)} \Rightarrow \frac{f^{\prime}\left(t_{x}\right)}{g^{\prime}\left(t_{x}\right)}=\frac{f(x)}{g(x)} .
$$

When $x \rightarrow x_{0}^{+}$, then also $t_{x} \rightarrow x_{0}$.
Thus

$$
\begin{aligned}
& \lim _{x \rightarrow x_{0}^{+}} \frac{f^{\prime}\left(t_{x}\right)}{g^{\prime}(t x)}=\lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)} \Rightarrow \\
& \lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=\lim _{x \rightarrow x_{0}} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L
\end{aligned}
$$

- For the case of a left-side limit ne work similarly.
- The case of a tro-sided limit follows from the side limits.
- It remains to deal with the case when $x_{b}= \pm \infty$.
Set $f_{1}(x)=f\left(\frac{1}{x}\right), \quad g_{1}(x)=g\left(\frac{1}{x}\right), \quad 0<x<a$
Apply the proof for the right side -limits at O and observe that

$$
\lim _{x \rightarrow 0^{+}} \frac{f_{1}^{\prime}(x)}{g_{1}^{\prime}(x)}=\lim _{x \rightarrow 0^{+}} \frac{f^{\prime}\left(\frac{1}{x}\right)\left(-\frac{1}{x^{2}}\right)}{g^{\prime}\left(\frac{1}{x}\right) \cdot\left(-\frac{1}{x^{2}}\right)}=\lim _{y \rightarrow+\infty} \frac{f^{\prime}(y)}{g^{\prime}(y)}=L .
$$

The sarre conclusion is also true when dealing with indefinite limits of the form $\frac{ \pm \infty}{ \pm \infty}$
(proof omitted).
E.g. Find $\lim _{x \rightarrow 0^{+}} x^{\sqrt{x}}$.

$$
x^{\sqrt{x}}=e^{\log x^{\sqrt{x}}}=e^{\sqrt{x} \log x}
$$

Now $\lim _{x \rightarrow 0^{+}} \sqrt{x} \log x=\lim _{x \rightarrow 0^{+}} \frac{\log x}{\frac{1}{\sqrt{x}}}$

$$
=\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{-\frac{1}{2 \sqrt{x} \cdot x}}=0
$$

So $\lim _{x \rightarrow 0^{+}} x^{\sqrt{x}}=e^{0}=1$.

