EXAM IN MA0301 ELEMENTARY DISCRETE MATHEMATICS
 English
 August 2012
 Time: 4 hours

No printed or hand-written material is allowed during the exam.
An approved, simple calculator is allowed.

All problems have equal weight. Show your work.

Problem 1 In how many different ways can the letters in the word "kassekose" be arranged? What about "prinpripp"?

Problem 2

a) Show that $p \wedge \neg q \quad \Leftrightarrow \quad \neg(\neg p \vee q)$ using a truth table.
b) Decide if the statement s follows from the premises $p \leftrightarrow q, q \rightarrow r, r \vee \neg s$ and $\neg s \rightarrow q$, either by using the laws of logic and rules of inference to deduce s from the above, or by giving a counter-example.
c) Decide if the statement t follows from the premises $p \wedge q, p \rightarrow(r \wedge q), r \rightarrow(s \vee t)$ and $\neg s$, either by using the laws of logic and rules of inference to deduce t from the above, or by giving a counter-example.

Problem 3 Use mathematical induction to show that $\sum_{i=1}^{n} i=n(n+1) / 2$.

Problem 4 Are the following two graphs isomorphic? Homeomorphic?

Problem 5 A undirected, weighted graph with vertices $\{a, b, c, f, g, h, i\}$ has weighted edges as given by the following table:

vertices			weight	vertices	
a	g	10	weight		
a	b	14	h	17	
b	f	10	c	9	
c	f	2	f	i	3
h	i	1	g	i	4
h	g	6			

(For example, there is an edge between a and g with weight 10.)
Draw the graph and use Dijkstra's algorithm to find the shortest path from a to all the other vertices in the graph.

Problem 6 Let R be a relationi on a set A. The transitive closure R^{+}of R is the relation

$$
R^{+}=R \cup R^{2} \cup R^{3} \cup R^{4} \cup \ldots
$$

a) Given the following three relations on $\{1,2,3,4\}$ (given as graphs), find the transitive closure of each relation.

b) Show that if a relation is transitive, then the transitive closure of the relation equals the relation.
c) Let A and B be sets and let $f: A \rightarrow B$ be a function. We can define a relation R on A using the rule: $x R y$ if and only if $f(x)=f(y)$.
Find the transitive closure of R.
Hint: You can use the fact that R is an equivalence relation without proof. You can use the result from the previous task even if you have not answered that task.

