MA0301 ELEMENTARY DISCRETE MATHEMATICS NTNU, SPRING 2023

EXERCISE SET 7 - SOLUTIONS

Deadline: Monday 13.03.2022, 23:59

The relevant sections of Lewis–Zax is chapters 4, 8, and 13.

Exercise 1. Use induction to prove the following.

a) Show that for all natural numbers $n \ge 5$, there are natural numbers a and b such that n = 2a + 5b.

Hint. Use multiple base cases.

- b) Show that for all natural numbers n < 5 there are integers a and b such that n = 2a + 5b.
- c) Use a) and b) to show that every integer can be written as a sum 2a + 5b where a and b are integers.
- d) (Optional) Describe a more direct strategy to prove c).
- Solution. a) Let the base cases be n = 5 and n = 6. If n = 5, then $n = 2 \cdot 0 + 5 \cdot 1$. If n = 6, then $n = 2 \cdot 3 + 5 \cdot 0$. Now, our inductive hypothesis can be defined as follows. If $5 \le m \le n$, then m can be written as a sum m = 2a + 5b.

To prove the inductive step, we must show that n+1 can be written as a sum 2a+5b when $n \ge 6$, given the inductive hypothesis. Now, in this case, we know that $n+1-2=n-1\ge 5$, so by the inductive hypothesis, we can write n-1=2a+5b for natural numbers a and b. And since n+1=(n-1)+2, n+1 can be written as the sum $n+1=2 \cdot (a+1)+5b$.

- b) We prove this by exhausting the cases. We have
 - $\bullet \ 0 = 2 \cdot 0 + 5 \cdot 0$
 - $1 = 2 \cdot (-2) + 5 \cdot 1$
 - $2 = 2 \cdot 1 + 5 \cdot 0$
 - $3 = 2 \cdot (-1) + 5 \cdot 1$
 - $4 = 2 \cdot 2 + 5 \cdot 0$
- c) Together, a) and b) show that every natural number may be written as a sum 2a + 5b where a and b are integers. If n is negative, then we know -n may be written as a sum 2a + 5b, and in this case the following is a solution:

$$n = -(-n) = -(2a + 5b) = 2(-a) + 5(-b).$$

d) Since 1 can be written as the sum $1 = 2 \cdot (-2) + 5 \cdot 1$, we can write any integer n as

$$n = n \cdot 1 = n \cdot (2 \cdot (-2) + 5 \cdot 1) = 2 \cdot (-2n) + 5 \cdot n.$$

Exercise 2 (The fundamental theorem of arithmetic). Use strong induction to show that every natural number greater than 1 can be written as a product of primes.¹

¹The primes themselves are considered "unary products" of primes.

Hint. Use the inductive hypothesis that every number n satisfying $2 \le n \le m$ can be written as a product of primes $n = p_1 p_2 \cdots p_r$ for some positive integer r.

Solution. The base case is n = 2 which is prime.

To show the inductive step, we must prove that n + 1 can be written as a product of primes; that is, $n + 1 = p_1 p_2 \dots p_r$ where the p_i are prime.

There are two cases to consider. Either n + 1 is prime, in which case we are done, or n + 1 is a composite number. If n + 1 is composite, it can be written as a product of smaller factors n + 1 = ab such that $2 \le a \le n$ and $2 \le b \le n$. Now, by the inductive hypothesis, a and b may be written as products of primes

$$a = q_1 q_2 \cdots q_s$$
 and $b = q'_1 q'_2 \cdots q'_{s'}$.

So n + 1 may also be written as a product of primes, namely

$$n+1 = a \cdot b = q_1 \cdots q_s \cdot q'_1 \cdots q'_{s'}.$$

hence by strong induction, we have shown that every natural number greater than 1 can be written as a product of primes. $\hfill \Box$

Exercise 3. Lewis-Zax: Exercise 8.1.

Recall that strings are inductively defined as either the empty string λ (greek letter lambda), or a pair $\langle a, s \rangle$ where a is a symbol from some alphabet Σ (capital greek letter sigma) and s is another string.

Solution. We define $\#_a(s)$ inductively. Base case: $\#_a(\lambda) = 0$. Constructor case. Civen the string $\langle n, s \rangle$, then $\#_a(\langle n, s \rangle)$.

Constructor case. Given the string $\langle x, s \rangle$, then $\#_a(\langle x, s \rangle)$ is defined as

- If x = a then $\#_a(\langle x, s \rangle) := \#_a(s) + 1$.
- Otherwise $\#_a(\langle x, s \rangle) := \#_a(s)$.

We want to prove that the following identity holds by structural induction:

$$\#_a(t \cdot s) = \#_a(t) + \#_a(s).$$

To do this, we apply structural induction on t. The base case is when t is λ , in which case we have $\#_a(\lambda \cdot s) = \#_a(s) = 0 + \#_a(s) = \#_a(\lambda) + \#_a(s)$. Now for the inductive step, let $t = \langle x, u \rangle$ where x is a symbol. We need to consider the two cases that x is, or is not a.

x = a: By the inductive definitions of \cdot and $\#_a$ we have

$$\#_a(\langle a, u \rangle \cdot s) = \#_a(\langle a, u \cdot s \rangle) = \#_a(u \cdot s) + 1 \quad \text{and} \quad \#_a(\langle a, u \rangle) + \#_a(s) = \#_a(u) + 1 + \#_a(s).$$

So by using the inductive hypothesis $\#_a(u \cdot s) = \#_a(u) + \#_a(s)$, we are done, i.e.

$$\#_a(\langle a, u \rangle \cdot s) = \#_a(u \cdot s) + 1 = \#_a(u) + \#_a(s) + 1 = \#_a(\langle a, u \rangle) + \#_a(s)$$

 $x \neq a$: Again by the inductive definitions we have

$$#_a(\langle x, u \rangle \cdot s) = #_a(\langle x, u \cdot s \rangle) = #_a(u \cdot s) \text{ and } #_a(s) + #_a(\langle x, u \rangle) = #_a(u) + #_a(s).$$

So by using the inductive hypothesis we are done.

Thus we have that the identity $\#_a(t \cdot s) = \#_a(t) + \#_a(s)$ holds for all strings t and s.

Exercise 4. Lewis-Zax: Exercise 8.4.

Recall that |s| here means the length of the string, as defined (inductively) in Lewis–Zax chapter 8.

Solution. We will use structural induction on u to prove that $|t \cdot s| = |t| + |s|$. For the base case just observe $|\lambda \cdot s| = |s| = 0 + |s| = |\lambda| + |s|$. For the constructor case, let $s = \langle x, u \rangle$ where $x \in \Sigma$, i.e. x is a symbol. We need to show that $|\langle x, u \rangle \cdot s| = |\langle x, u \rangle | + |s|$. We have the following chain of equalities

$$|\langle x, u \rangle \cdot s| = |\langle x, u \cdot s \rangle| = |u \cdot s| + 1 = |u| + 1 + |s| = |\langle x, u \rangle| + |s|$$

the first equality is by the inductive definition of \cdot , the second equality is by the inductive definition of |-|, the third equality is by the inductive hypothesis, and the fourth is again by the inductive definition of |-|. Hence $|u \cdot v| = |u| + |v|$ is true for all strings u, v.

Exercise 5. Lewis-Zax: Exercise 13.3.

Refer to the chapter summary if any of the terminology used in this exercise is unfamiliar to you.

Solution.

(a)			
		in-degree	out-degree
	a	1	2
	b	1	2
	c	2	2
	d	2	2
	е	2	0

(b) In addition to the 5 trivial cycles (i.e. the cycles of length 0), there are 3 nontrivial cycles in G up to choice of starting vertex and they are as follows:

$$\{\{(a \to c \to d \to b \to a), (a \to d \to b \to a), (b \to c \to d \to b)\}.$$

The number of cycles that pass through each vertex is as follows:

(c) The distances $d_{\overline{G}}(\text{row}, \text{column})$ are detailed in the following table:

	а	b	с	d	e
a	0	2	1	1	2
b	1	0	1	2	2
с	3	2	0	1	1
d	2	1	2	0	1
е	∞	∞	∞	∞	0

(d) Since the graph has 5 vertices, the longest path can be at most 4 arcs long. One path that is 4 arcs long is a → d → b → c → e, so the longest path is exactly 4 arcs long. All of the paths of length 4 are

$$\{(a \to d \to b \to c \to e), (b \to a \to c \to d \to e), (d \to b \to a \to c \to e)\}.$$