MA0301

ELEMENTARY DISCRETE MATHEMATICS
 NTNU, SPRING 2023

Exercise Set 7 - Solutions

Deadline: Monday 13.03.2022, 23:59

The relevant sections of Lewis-Zax is chapters 4,8 , and 13 .
Exercise 1. Use induction to prove the following.
a) Show that for all natural numbers $n \geq 5$, there are natural numbers a and b such that $n=2 a+5 b$.
Hint. Use multiple base cases.
b) Show that for all natural numbers $n<5$ there are integers a and b such that $n=2 a+5 b$.
c) Use a) and b) to show that every integer can be written as a sum $2 a+5 b$ where a and b are integers.
d) (Optional) Describe a more direct strategy to prove c).

Solution. a) Let the base cases be $n=5$ and $n=6$. If $n=5$, then $n=2 \cdot 0+5 \cdot 1$. If $n=6$, then $n=2 \cdot 3+5 \cdot 0$. Now, our inductive hypothesis can be defined as follows. If $5 \leq m \leq n$, then m can be written as a sum $m=2 a+5 b$.

To prove the inductive step, we must show that $n+1$ can be written as a sum $2 a+5 b$ when $n \geq 6$, given the inductive hypothesis. Now, in this case, we know that $n+1-2=n-1 \geq 5$, so by the inductive hypothesis, we can write $n-1=2 a+5 b$ for natural numbers a and b. And since $n+1=(n-1)+2, n+1$ can be written as the sum $n+1=2 \cdot(a+1)+5 b$.
b) We prove this by exhausting the cases. We have

- $0=2 \cdot 0+5 \cdot 0$
- $1=2 \cdot(-2)+5 \cdot 1$
- $2=2 \cdot 1+5 \cdot 0$
- $3=2 \cdot(-1)+5 \cdot 1$
- $4=2 \cdot 2+5 \cdot 0$
c) Together, a) and b) show that every natural number may be written as a sum $2 a+5 b$ where a and b are integers. If n is negative, then we know $-n$ may be written as a sum $2 a+5 b$, and in this case the following is a solution:

$$
n=-(-n)=-(2 a+5 b)=2(-a)+5(-b)
$$

d) Since 1 can be written as the sum $1=2 \cdot(-2)+5 \cdot 1$, we can write any integer n as

$$
n=n \cdot 1=n \cdot(2 \cdot(-2)+5 \cdot 1)=2 \cdot(-2 n)+5 \cdot n
$$

Exercise 2 (The fundamental theorem of arithmetic). Use strong induction to show that every natural number greater than 1 can be written as a product of primes. ${ }^{1}$

[^0]Hint. Use the inductive hypothesis that every number n satisfying $2 \leq n \leq m$ can be written as a product of primes $n=p_{1} p_{2} \cdots p_{r}$ for some positive integer r.

Solution. The base case is $n=2$ which is prime.
To show the inductive step, we must prove that $n+1$ can be written as a product of primes; that is, $n+1=p_{1} p_{2} \ldots p_{r}$ where the p_{i} are prime.
There are two cases to consider. Either $n+1$ is prime, in which case we are done, or $n+1$ is a composite number. If $n+1$ is composite, it can be written as a product of smaller factors $n+1=a b$ such that $2 \leq a \leq n$ and $2 \leq b \leq n$. Now, by the inductive hypothesis, a and b may be written as products of primes

$$
a=q_{1} q_{2} \cdots q_{s} \quad \text { and } \quad b=q_{1}^{\prime} q_{2}^{\prime} \cdots q_{s^{\prime}}^{\prime}
$$

So $n+1$ may also be written as a product of primes, namely

$$
n+1=a \cdot b=q_{1} \cdots q_{s} \cdot q_{1}^{\prime} \cdots q_{s^{\prime}}^{\prime}
$$

hence by strong induction, we have shown that every natural number greater than 1 can be written as a product of primes.

Exercise 3. Lewis-Zax: Exercise 8.1.
Recall that strings are inductively defined as either the empty string λ (greek letter lambda), or a pair $\langle a, s\rangle$ where a is a symbol from some alphabet Σ (capital greek letter sigma) and s is another string.

Solution. We define $\#_{a}(s)$ inductively.
Base case: $\#_{a}(\lambda)=0$.
Constructor case. Given the string $\langle x, s\rangle$, then $\#_{a}(\langle x, s\rangle)$ is defined as

- If $x=a$ then $\#_{a}(\langle x, s\rangle):=\#_{a}(s)+1$.
- Otherwise $\#_{a}(\langle x, s\rangle):=\#_{a}(s)$.

We want to prove that the following identity holds by structural induction:

$$
\#_{a}(t \cdot s)=\#_{a}(t)+\#_{a}(s)
$$

To do this, we apply structural induction on t. The base case is when t is λ, in which case we have $\#_{a}(\lambda \cdot s)=\#_{a}(s)=0+\#_{a}(s)=\#_{a}(\lambda)+\#_{a}(s)$. Now for the inductive step, let $t=\langle x, u\rangle$ where x is a symbol. We need to consider the two cases that x is, or is not a.
$x=a$: By the inductive definitions of \cdot and $\#_{a}$ we have

$$
\#_{a}(\langle a, u\rangle \cdot s)=\#_{a}(\langle a, u \cdot s\rangle)=\#_{a}(u \cdot s)+1 \quad \text { and } \quad \#_{a}(\langle a, u\rangle)+\#_{a}(s)=\#_{a}(u)+1+\#_{a}(s)
$$

So by using the inductive hypothesis $\#_{a}(u \cdot s)=\#_{a}(u)+\#_{a}(s)$, we are done, i.e.

$$
\#_{a}(\langle a, u\rangle \cdot s)=\#_{a}(u \cdot s)+1=\#_{a}(u)+\#_{a}(s)+1=\#_{a}(\langle a, u\rangle)+\#_{a}(s)
$$

$x \neq a$: Again by the inductive definitions we have

$$
\#_{a}(\langle x, u\rangle \cdot s)=\#_{a}(\langle x, u \cdot s\rangle)=\#_{a}(u \cdot s) \quad \text { and } \quad \#_{a}(s)+\#_{a}(\langle x, u\rangle)=\#_{a}(u)+\#_{a}(s)
$$

So by using the inductive hypothesis we are done.
Thus we have that the identity $\#_{a}(t \cdot s)=\#_{a}(t)+\#_{a}(s)$ holds for all strings t and s.

Exercise 4. Lewis-Zax: Exercise 8.4.
Recall that $|s|$ here means the length of the string, as defined (inductively) in Lewis-Zax chapter 8.
Solution. We will use structural induction on u to prove that $|t \cdot s|=|t|+|s|$. For the base case just observe $|\lambda \cdot s|=|s|=0+|s|=|\lambda|+|s|$. For the constructor case, let $s=\langle x, u\rangle$ where $x \in \Sigma$, i.e. x is a symbol. We need to show that $|\langle x, u\rangle \cdot s|=|\langle x, u\rangle|+|s|$.

We have the following chain of equalities

$$
|\langle x, u\rangle \cdot s|=|\langle x, u \cdot s\rangle|=|u \cdot s|+1=|u|+1+|s|=|\langle x, u\rangle|+|s|,
$$

the first equality is by the inductive definition of \cdot, the second equality is by the inductive definition of $|-|$, the third equality is by the inductive hypothesis, and the fourth is again by the inductive definition of $|-|$. Hence $|u \cdot v|=|u|+|v|$ is true for all strings u, v.

Exercise 5. Lewis-Zax: Exercise 13.3.
Refer to the chapter summary if any of the terminology used in this exercise is unfamiliar to you.

Solution.

(a)

	in-degree	out-degree
a	1	2
b	1	2
c	2	2
d	2	2
e	2	0

(b) In addition to the 5 trivial cycles (i.e. the cycles of length 0), there are 3 nontrivial cycles in G up to choice of starting vertex and they are as follows:

$$
\{\{(a \rightarrow c \rightarrow d \rightarrow b \rightarrow a),(a \rightarrow d \rightarrow b \rightarrow a),(b \rightarrow c \rightarrow d \rightarrow b)\} .
$$

The number of cycles that pass through each vertex is as follows:

a	b	c	d	e
3	4	3	4	1

(c) The distances d_{G} (row, column) are detailed in the following table:

	a	b	c	d	e
a	0	2	1	1	2
b	1	0	1	2	2
c	3	2	0	1	1
d	2	1	2	0	1
e	∞	∞	∞	∞	0

(d) Since the graph has 5 vertices, the longest path can be at most 4 arcs long. One path that is 4 arcs long is $a \rightarrow d \rightarrow b \rightarrow c \rightarrow e$, so the longest path is exactly 4 arcs long. All of the paths of length 4 are

$$
\{(a \rightarrow d \rightarrow b \rightarrow c \rightarrow e),(b \rightarrow a \rightarrow c \rightarrow d \rightarrow e),(d \rightarrow b \rightarrow a \rightarrow c \rightarrow e)\} .
$$

[^0]: ${ }^{1}$ The primes themselves are considered "unary products" of primes.

