MA0301
ELEMENTARY DISCRETE MATHEMATICS
NTNU, SPRING 2023

Solutions to Exercise Set 1

Exercise 1. Write out the truth table for the following compound statements:
a) $r \Rightarrow(p \Rightarrow q)$
b) $p \Rightarrow(q \vee r)$
c) $p \Rightarrow((q \Rightarrow \neg r) \vee(p \oplus r))$

Can you make the statements in a) and b) logically equivalent by adding a single negation?
Solution. a) The truth table is the following:

p	q	r	$p \Rightarrow q$	$r \Rightarrow(p \Rightarrow q)$
T	T	T	T	T
T	F	T	F	F
F	T	T	T	T
F	F	T	T	T
T	T	F	T	T
T	F	F	F	T
F	T	F	T	T
F	F	F	T	T

b) The truth table is the following:

p	q	r	$q \vee r$	$p \Rightarrow(q \vee r)$
T	T	T	T	T
T	F	T	T	T
F	T	T	T	T
F	F	T	T	T
T	T	F	T	T
T	F	F	F	F
F	T	F	T	T
F	F	F	F	T

c) The truth table is the following:

p	q	r	$\neg r$	$q \Rightarrow \neg r$	$p \oplus r$	$(q \Rightarrow \neg r) \vee(p \oplus r)$	$p \Rightarrow((q \Rightarrow \neg r) \vee(p \oplus r))$
T	T	T	F	F	F	F	F
T	F	T	F	T	F	T	T
F	T	T	F	F	T	T	T
F	F	T	F	T	T	T	T
T	T	F	T	T	T	T	T
T	F	F	T	T	T	T	T
F	T	F	T	T	F	T	T
F	F	F	T	T	F	T	T

Changing the expression in a) to $\neg r \Rightarrow(p \Rightarrow q)$ makes it logically equivalent to the compound statement from b).

Exercise 2. Let p, q, r denote the following statements about a particular triangle $A B C$.
p : Triangle $A B C$ is isosceles.
q : Triangle $A B C$ is equilateral.
r : Triangle $A B C$ is equiangular.
Translate each of the following into an English sentence.
a) $q \Rightarrow p$
b) $\neg p \Rightarrow \neg q$
c) $q \Leftrightarrow r$
d) $p \wedge \neg q$
e) $r \Rightarrow p$

Solution.

a) If the triangle $A B C$ is equilateral then $A B C$ is isosceles.
b) If the triangle $A B C$ is not isosceles then $A B C$ is not equilateral.
c) The triangle $A B C$ is equilateral if, and only if, $A B C$ is equiangular.
d) The triangle $A B C$ is isosceles and not equilateral.
e) If the triangle $A B C$ is equiangular then $A B C$ is isosceles.

Exercise 3. Let p, q and r be propositional variables. Verify whether the following compound statements are tautologies, satisfiable, or unsatisfiable.
a) $(p \vee q) \vee(p \Rightarrow q)$
b) $(p \Rightarrow(q \wedge \neg q)) \wedge p$
c) $(p \Rightarrow(q \wedge \neg q)) \wedge p \Rightarrow r$

Hint: You may use truth tables but it is also possible to write out shorter arguments in sentences.

Solution.

a) The implication $(p \Rightarrow q)$ can only have the truth value F when p has the value T. But in this case $(p \vee q)$ always has the truth value T. It follows that the whole compound statement always has the truth value T (that is for any choice of truth values for p and q) and is thus a tautology.
b) We argue that the whole compound statement can never be true and is thus unsatisfiable. To this end, first observe that the statement $(q \wedge \neg q)$ is always false (unsatisfiable). For this reason $(p \Rightarrow(q \wedge \neg q))$ will only be true if p is false. Thus the whole compound statement can never be true.
c) From b) we know that $(p \Rightarrow(q \wedge \neg q)) \wedge p$ is unsatisfiable and thus always false. It follows that the implication $(p \Rightarrow(q \wedge \neg q)) \wedge p \Rightarrow r$ is always true (regardless of the truth value r has) and is thus a tautology.

Exercise 4. Let the variable r have truth value T. Determine all truth value assignments for the propositional variables p, q and s for which the truth value of the following statement is T :

$$
(p \Rightarrow(q \wedge r)) \wedge(r \Rightarrow((s \vee \neg q) \wedge p))
$$

Solution. First of all, we observe that for the whole compound statement to be true we need that
(1) $(p \Rightarrow(q \wedge r))$ is true, and
(2) $(r \Rightarrow((s \vee \neg q) \wedge p))$ is true.

Because r is true, the second of these statements can only be true if $((s \vee \neg q) \wedge p)$ is true. Thus p needs to have the truth value T. We can use this fact about p, together with requirement 1 to conclude that ($q \wedge r$) must be true. Thus q also needs to have the truth value T. Because we know that $(s \vee \neg q)$ needs to be true, it follows now that also s has to have the truth value T. This shows that if the whole compound statement and r has the truth value T, then p, q, and s have the truth value T as well. Thus the only choice of truth value assignments for p, q and s is that they are all T.

Exercise 5. Prove the distributive laws of propositional logic using truth tables:
a) $p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)$
b) $p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r)$.

Solution.

a) For the first law, we have the truth table

p	q	r	$q \vee r$	$p \wedge(q \vee r)$	$p \wedge q$	$p \wedge r$	$(p \wedge q) \vee(p \wedge r)$
T	T	T	T	T	T	T	T
T	F	T	T	T	F	T	T
F	T	T	T	F	F	F	F
F	F	T	T	F	F	F	F
T	T	F	T	T	T	F	T
T	F	F	F	F	F	F	F
F	T	F	T	F	F	F	F
F	F	F	F	F	F	F	F

We see that for every possible configuration of p, q, and r that the two sides of the proposed law agree, hence they are logically equivalent.
b) We follow the same procedure as in a). The truth table is

p	q	r	$q \wedge r$	$p \vee(q \wedge r)$	$p \vee q$	$p \vee r$	$(p \vee q) \wedge(p \vee r)$
T	T	T	T	T	T	T	T
T	F	T	F	T	T	T	T
F	T	T	T	T	T	T	T
F	F	T	F	F	F	T	F
T	T	F	F	T	T	T	T
T	F	F	F	T	T	T	T
F	T	F	F	F	T	F	F
F	F	F	F	F	F	F	F

Exercise 6. Use the laws of logic to simplify the statement $(p \wedge q) \vee \neg p$.

Solution. Using the laws of logic we have:

$$
\begin{aligned}
(p \wedge q) \vee \neg p & \equiv \neg p \vee(p \wedge q) & & \text { (Commutative law) } \\
& \equiv(\neg p \vee p) \wedge(\neg p \vee q) & & \text { (Distributive law) } \\
& \equiv \neg p \vee q & & \text { (Using absorption and that }(\neg p \vee p) \text { is a tautology) }
\end{aligned}
$$

(This can also be rewritten as $p \Rightarrow q$.)
Exercise 7. Negate each of the following statements and simplify the result.

$$
\text { a) }(p \wedge q) \Rightarrow(\neg r \vee \neg s) \quad \text { b) } p \Rightarrow(r \oplus s)
$$

Solution.

a) Recall the equivalence $a \Rightarrow b \equiv \neg a \vee b$ and DeMorgan's laws $\neg(a \vee b) \equiv \neg a \wedge \neg b$ and $\neg(a \wedge b) \equiv \neg a \vee \neg b$. Thus we have the equivalences

$$
\neg((p \wedge q) \Rightarrow(\neg r \vee \neg s)) \equiv \neg(\neg(p \wedge q) \vee(\neg r \vee \neg s)) \equiv(p \wedge q) \wedge \neg(\neg r \vee \neg s) \equiv p \wedge q \wedge r \wedge s
$$

b) Similarly to a) but now also using the logical equivalence $p \oplus q \equiv(p \wedge \neg q) \vee(\neg p \wedge q)$ we get

$$
\begin{aligned}
& \neg(p \Rightarrow(r \oplus s)) \equiv \neg(\neg p \vee((r \wedge \neg s) \vee(\neg r \wedge s))) \equiv p \wedge \neg(r \wedge \neg s) \wedge \neg(\neg r \wedge s) \\
& \equiv p \wedge(\neg r \vee s) \wedge(r \vee \neg s) \equiv p \wedge(r \Leftrightarrow s)
\end{aligned}
$$

Exercise 8. Lewis, Zax: Exercise 9.6 (a).
Solution. Using the propositions $p=$ "I study", $q=$ "I will pass the course", and $r=$ "The professor accepts bribes", translate the following into statements of propositional logic:
(1) If I do not study, then I will only pass the course if the professor accepts bribes: $\neg p \Rightarrow$ $(q \Rightarrow r)$.
(2) If the professor accepts bribes, then I do not study: $r \Rightarrow \neg p$.
(3) The professor does not accept bribes, but I study and will pass the course: $\neg r \wedge(p \wedge q)$.
(4) If I study, the professor will accept bribes and I will pass the course: $p \Rightarrow(r \wedge q)$.
(5) I will not pass the course but the professor accepts bribes: $\neg q \wedge r$.

Exercise 9. Let p be an arbitrary proposition, and let q and r be the following statements:
q : The proposition p is a tautology.
r : The proposition p is satisfiable.
Determine whether the following statements are tautologies, satisfiable or unsatisfiable:
a) $q \Rightarrow r$
b) r
c) $\neg q \Rightarrow \neg r$

Solution.

a) Every tautology is, in particular, satisfiable, so the only problematic case of the implication cannot occur. Hence $q \Rightarrow r$ is a tautology.
b) If p is any satisfiable proposition, then r is true, therefore r is satisfiable. However, not all propositions are satisfiable, so r is not a tautology.
c) If p is an unsatisfiable proposition, then, in particular, it is not a tautology, hence the statement $\neg q \Rightarrow \neg r$ is satisfiable. However, if p is some satisfiable proposition that is not a tautology, then the statement $\neg q \Rightarrow \neg r$ is not satisfied, hence it is not a tautology.

