MA0301 ELEMENTARY DISCRETE MATHEMATICS NTNU, SPRING 2023

Solutions to Exercise Set 1

Exercise 1. Write out the truth table for the following compound statements:

 $a) \ r \Rightarrow (p \Rightarrow q) \qquad b) \ p \Rightarrow (q \lor r) \qquad c) \ p \Rightarrow ((q \Rightarrow \neg r) \lor (p \oplus r))$

Can you make the statements in a) and b) logically equivalent by adding a single negation?

Solution. a) The truth table is the following:

p	q	r	$p \Rightarrow q$	$r \Rightarrow (p \Rightarrow q)$		
Т	Т	Т	Т	Т		
Т	F	Т	F	\mathbf{F}		
F	Т	Т	Т	Т		
F	F	Т	Т	Т		
Т	Т	F	Т	Т		
Т	F	F	F	Т		
F	Т	F	Т	Т		
\mathbf{F}	F	F	Т	Т		

b) The truth table is the following:

p	q	r	$q \vee r$	$p \Rightarrow (q \lor r)$
Т	Т	Т	Т	Т
T	F	Т	Т	Т
F	Т	Т	Т	Т
F	F	Т	Т	Т
T	Т	F	Т	Т
T	F	F	F	F
F	Т	F	Т	Т
F	F	F	F	Т

c) The truth table is the following:

p	q	r	$\neg r$	$q \Rightarrow \neg r$	$p\oplus r$	$(q \Rightarrow \neg r) \lor (p \oplus r)$	$p \Rightarrow ((q \Rightarrow \neg r) \lor (p \oplus r))$
Т	Т	Т	F	F	F	\mathbf{F}	F
Т	F	Т	\mathbf{F}	Т	F	Т	Т
\mathbf{F}	Т	Т	\mathbf{F}	\mathbf{F}	Т	Т	Т
\mathbf{F}	F	Т	\mathbf{F}	Т	Т	Т	Т
Т	Т	F	Т	Т	Т	Т	Т
Т	F	F	Т	Т	Т	Т	Т
\mathbf{F}	Т	F	Т	Т	F	Т	Т
\mathbf{F}	F	F	Т	Т	F	Т	Т

Changing the expression in a) to $\neg r \Rightarrow (p \Rightarrow q)$ makes it logically equivalent to the compound statement from b).

Exercise 2. Let p, q, r denote the following statements about a particular triangle ABC.

- p: Triangle ABC is isosceles.
- q: Triangle ABC is equilateral.
- r: Triangle ABC is equiangular.

Translate each of the following into an English sentence.

$$a) \ q \Rightarrow p \qquad b) \ \neg p \Rightarrow \neg q \qquad c) \ q \Leftrightarrow r \qquad d) \ p \land \neg q \qquad e) \ r \Rightarrow p$$

Solution.

- a) If the triangle ABC is equilateral then ABC is isosceles.
- b) If the triangle ABC is not isosceles then ABC is not equilateral.
- c) The triangle ABC is equilateral if, and only if, ABC is equiangular.
- d) The triangle ABC is isosceles and not equilateral.
- e) If the triangle ABC is equiangular then ABC is isosceles.

Exercise 3. Let p, q and r be propositional variables. Verify whether the following compound statements are tautologies, satisfiable, or unsatisfiable.

a)
$$(p \lor q) \lor (p \Rightarrow q)$$
 b) $(p \Rightarrow (q \land \neg q)) \land p$ c) $(p \Rightarrow (q \land \neg q)) \land p \Rightarrow r$

Hint: You may use truth tables but it is also possible to write out shorter arguments in sentences.

Solution.

- a) The implication $(p \Rightarrow q)$ can only have the truth value F when p has the value T. But in this case $(p \lor q)$ always has the truth value T. It follows that the whole compound statement always has the truth value T (that is for any choice of truth values for p and q) and is thus a tautology.
- b) We argue that the whole compound statement can never be true and is thus unsatisfiable. To this end, first observe that the statement $(q \land \neg q)$ is always false (unsatisfiable). For this reason $(p \Rightarrow (q \land \neg q))$ will only be true if p is false. Thus the whole compound statement can never be true.
- c) From b) we know that $(p \Rightarrow (q \land \neg q)) \land p$ is unsatisfiable and thus always false. It follows that the implication $(p \Rightarrow (q \land \neg q)) \land p \Rightarrow r$ is always true (regardless of the truth value r has) and is thus a tautology.

3

Exercise 4. Let the variable r have truth value T. Determine all truth value assignments for the propositional variables p, q and s for which the truth value of the following statement is T:

$$(p \Rightarrow (q \land r)) \land (r \Rightarrow ((s \lor \neg q) \land p))$$

Solution. First of all, we observe that for the whole compound statement to be true we need that

- (1) $(p \Rightarrow (q \land r))$ is true, and
- (2) $(r \Rightarrow ((s \lor \neg q) \land p))$ is true.

Because r is true, the second of these statements can only be true if $((s \lor \neg q) \land p)$ is true. Thus p needs to have the truth value T. We can use this fact about p, together with requirement 1 to conclude that $(q \land r)$ must be true. Thus q also needs to have the truth value T. Because we know that $(s \lor \neg q)$ needs to be true, it follows now that also s has to have the truth value T. This shows that if the whole compound statement and r has the truth value T, then p, q, and s have the truth value T as well. Thus the only choice of truth value assignments for p, q and s is that they are all T.

Exercise 5. Prove the distributive laws of propositional logic using truth tables:

a)
$$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$$
 b) $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$

Solution.

a) For the first law, we have the truth table

p	q	r	$q \vee r$	$p \wedge (q \vee r)$	$p \wedge q$	$p \wedge r$	$(p \wedge q) \vee (p \wedge r)$
Т	Т	Т	Т	Т	Т	Т	Т
Т	F	Т	Т	Т	F	Т	Т
F	Т	Т	Т	F	F	F	\mathbf{F}
F	F	Т	Т	\mathbf{F}	F	F	F
Т	Т	F	Т	Т	Т	F	Т
Т	F	F	F	\mathbf{F}	F	F	F
F	Т	F	Т	F	F	F	\mathbf{F}
F	F	F	\mathbf{F}	\mathbf{F}	F	F	\mathbf{F}

We see that for every possible configuration of p, q, and r that the two sides of the proposed law agree, hence they are logically equivalent.

b) We follow the same procedure as in a). The truth table is

p	q	r	$q \wedge r$	$p \vee (q \wedge r)$	$p \vee q$	$p \vee r$	$(p \lor q) \land (p \lor r)$
Т	Т	Т	Т	Т	Т	Т	Т
Т	F	Т	F	Т	Т	Т	Т
F	Т	Т	Т	Т	Т	Т	Т
F	F	Т	\mathbf{F}	\mathbf{F}	\mathbf{F}	Т	F
T	Т	\mathbf{F}	F	Т	Т	Т	Т
T	F	F	\mathbf{F}	Т	Т	Т	Т
F	Т	F	\mathbf{F}	\mathbf{F}	Т	F	F
F	F	\mathbf{F}	F	\mathbf{F}	\mathbf{F}	F	F

Exercise 6. Use the laws of logic to simplify the statement $(p \land q) \lor \neg p$.

Solution. Using the laws of logic we have:

$$\begin{array}{ll} (p \wedge q) \vee \neg p &\equiv \neg p \vee (p \wedge q) & (\text{Commutative law}) \\ &\equiv & (\neg p \vee p) \wedge (\neg p \vee q) & (\text{Distributive law}) \\ &\equiv & \neg p \vee q & (\text{Using absorption and that } (\neg p \vee p) \text{ is a tautology}) \end{array}$$

(This can also be rewritten as $p \Rightarrow q$.)

Exercise 7. Negate each of the following statements and simplify the result.

a)
$$(p \land q) \Rightarrow (\neg r \lor \neg s)$$
 b) $p \Rightarrow (r \oplus s)$

Solution.

a) Recall the equivalence $a \Rightarrow b \equiv \neg a \lor b$ and DeMorgan's laws $\neg(a \lor b) \equiv \neg a \land \neg b$ and $\neg(a \land b) \equiv \neg a \lor \neg b$. Thus we have the equivalences

$$\neg((p \land q) \Rightarrow (\neg r \lor \neg s)) \equiv \neg(\neg(p \land q) \lor (\neg r \lor \neg s)) \equiv (p \land q) \land \neg(\neg r \lor \neg s) \equiv p \land q \land r \land s$$

b) Similarly to a) but now also using the logical equivalence $p \oplus q \equiv (p \land \neg q) \lor (\neg p \land q)$ we get

$$\neg (p \Rightarrow (r \oplus s)) \equiv \neg (\neg p \lor ((r \land \neg s) \lor (\neg r \land s))) \equiv p \land \neg (r \land \neg s) \land \neg (\neg r \land s)$$
$$\equiv p \land (\neg r \lor s) \land (r \lor \neg s) \equiv p \land (r \Leftrightarrow s)$$

Exercise 8. Lewis, Zax: Exercise 9.6 (a).

Solution. Using the propositions p ="I study", q = "I will pass the course", and r = "The professor accepts bribes", translate the following into statements of propositional logic:

- (1) If I do not study, then I will only pass the course if the professor accepts bribes: $\neg p \Rightarrow (q \Rightarrow r)$.
- (2) If the professor accepts bribes, then I do not study: $r \Rightarrow \neg p$.
- (3) The professor does not accept bribes, but I study and will pass the course: $\neg r \land (p \land q)$.
- (4) If I study, the professor will accept bribes and I will pass the course: $p \Rightarrow (r \land q)$.
- (5) I will not pass the course but the professor accepts bribes: $\neg q \wedge r$.

Exercise 9. Let p be an arbitrary proposition, and let q and r be the following statements:

- q: The proposition p is a tautology.
- r: The proposition p is satisfiable.

Determine whether the following statements are tautologies, satisfiable or unsatisfiable:

a)
$$q \Rightarrow r$$
 b) r c) $\neg q \Rightarrow \neg r$

Solution.

- a) Every tautology is, in particular, satisfiable, so the only problematic case of the implication cannot occur. Hence $q \Rightarrow r$ is a tautology.
- b) If p is any satisfiable proposition, then r is true, therefore r is satisfiable. However, not all propositions are satisfiable, so r is not a tautology.
- c) If p is an unsatisfiable proposition, then, in particular, it is not a tautology, hence the statement $\neg q \Rightarrow \neg r$ is satisfiable. However, if p is some satisfiable proposition that is not a tautology, then the statement $\neg q \Rightarrow \neg r$ is not satisfied, hence it is not a tautology.