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Exercise 1. Lewis, Zax: Exercise 6.3a.

Solution.

Given that r is an injective function from A to B we know that f(x) = f(y) where x, y ∈ A implies

x = y (the definition of injectivity), i.e. that each image of an element from a ∈ A is a unique

element f(a) ∈ B. Let’s say there are |A| = n elements in A, then we know there are n unique

images in B corresponding to the n elements in A. Because |B| = |A| = n this implies that for

each of the n elements b ∈ B there is some a ∈ A such that f(a) = b, which is exactly the definition

of surjectivity. Then, if r is both injective and surjective, it is also bijective.

Exercise 2. Lewis, Zax: Exercise 6.7.

Solution.

f−1 = n
2 and g−1 = n−1

2 .

We will call Z set A, the even integers set B, and the odd integers set C. Then we have that

f : A → B and g : A → C. Both f and g are bijections. We want to find a function h such

that h : B → C and h is bijective. By theorem 6.4 this function exists and can be found using the

formula h(n) = g(f−1(n)).

h(n) = g(n2 ) = 2(n2 ) + 1 = n + 1. Then h(n) = n + 1 which clearly maps the even integers to the

odd integers and is bijective as desired.

Exercise 3. Use induction to show that: if n is a positive integer, then
∑n

m=1m = 1+2+3+...+n =
n(n+1)

2 .

Base Case:

Let n = 1. Then
∑1

m=1m = 1 = 1(1+1)
2 .

Inductive Hypothesis:

Assume this is true up to n = k,
∑k

m=1m = 1 + 2 + 3 + ...+ k = k(k+1)
2 .

Induction:

We want to show this is true for n = k + 1, that
∑k+1

m=1m = 1 + 2 + 3 + ... + k + (k + 1) =
(k+1)((k+1)+1)

2 = (k+1)(k+2)
2 , based on our assumption.

Starting with our assumption
∑k

m=1m = 1 + 2 + 3 + ...+ k = k(k+1)
2 , we can add a term of (k+1)

to both sides of the equation to get (
∑k

m=1m) + (k + 1) = k(k+1)
2 + (k + 1), which is equivalent to∑k+1

m=1m = k(k+1)
2 + (k + 1) = k(k+1)

2 + 2(k+1)
2 .
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k(k+1)
2 + 2(k+1)

2 = k(k+1)+2(k+1)
2 = (k+1)(k+2)

2 .

Then
∑k+1

m=1m = (k+1)(k+2)
2 and

∑n
m=1m = 1 + 2 + 3 + ... + n = n(n+1)

2 when n is a positive

integer. �

Exercise 4. Lewis, Zax: Exercise 3.7.

Base Case:

Let n = 1. Then
∑1

i=1 i
3 = 13 = (1)2 = (

∑1
i=1 i)

2.

Inductive Hypothesis:

Assume this is true up to n = k,
∑k

i=1 i
3 = (

∑k
i=1 i)

2.

Exercise 5. a) Find a formula for 1
1·2 +

1
2·3 + ...+ 1

n(n+1) by examining the values of this expression

for small values of n.
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Solution.

Examining the values for n = 1, 2, 3... we can derive the formula that for all n > 0,
∑n

i=1
1

i·(i+1) =
n

n+1 .

b) Use induction to prove the formula you conjectured in part a.

Solution.

Base Case:

Let n = 1. Then
∑1

i=1
1

i·(i+1) =
1
1·2 = 1

1+1 = n
n+1 .

Inductive Hypothesis:

Assume this is true up to n = k,
∑k

i=1
1

i·(i+1) =
k

k+1 .

Induction:

We want to show this is true for n = k + 1, that
∑k+1

i=1
1

i·(i+1) =
k+1
k+2 .

Starting with our assumption,
∑k

i=1
1

i·(i+1) =
k

k+1 , we will add a term of 1
(k+1)(k+2) to each side of

the equation:

(
∑k

i=1
1

i·(i+1)) +
1

(k+1)(k+2) =
k

k+1 + 1
(k+1)(k+2) . This is equivalent to:∑k+1

i=1
1

i·(i+1) =
k

k+1 + 1
(k+1)(k+2) .

Then we will simplify k
k+1 + 1

(k+1)(k+2) :

k
k+1 + 1

(k+1)(k+2) =
k(k+2)

(k+1)(k+2) +
1

(k+1)(k+2) =
k(k+2)+1
(k+1)(k+2) =

k2+2k+1
(k+1)(k+2) =

(k+1)2

(k+1)(k+2) =
k+1
k+2 .

Then
∑k+1

i=1
1

i·(i+1) =
k+1
k+2 and for all n > 0,

∑n
i=1

1
i·(i+1) =

n
n+1 . �

Exercise 6. What is wrong with this ”proof”?

”Theorem” For every positive integer n, if x and y are positive integers with max(x, y) = n, then

x = y.

Basis Step: Suppose that n = 1. If max(x, y) = 1 and x and y are both positive integers we have

x = y.

Inductive Step: Let k be a positive integer. Assume that whenever max(x, y) = k and x and y

are positive integers, then x = y. Now let max(x, y) = k + 1, where x and y are positive integers.

Then max(x − 1, y − 1) = k, so by the inductive hypothesis, x − 1 = y − 1. It follows that x = y,

completing the inductive step.

Solution.

In this case we know that x and y are positive integers but we don’t know which positive integers.

Meaning we do not know if x − 1 or y − 1 is a positive integer. If we do not know that x − 1 or

y − 1 are both positive integers then our assumption no longer applies, and the proof is not valid.

Exercise 7. Use induction to prove that 3n < n! if n is an integer greater than 6.

Solution.

Base Case:

Let n = 7. Then 37 < 7! = 2187 < 5040.

Inductive Hypothesis:

Assume this is true up to n = k, 3k < k!.
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Induction:

We want to show this is true for n = k + 1, that 3k+1 < (k + 1)!.

We have that 3k < k!, then we also have that 3 · 3k < 3 · k!. We know that k + 1 > 3, so

3 · 3k < (k + 1) · k! which is equivalent to 3k+1 < (k + 1)!.

Then by induction 3n < n! is true for all n > 6. �

Exercise 8. Use induction to prove that 6 divides n3 − n whenever n is a nonnegative integer.

Solution.

Base Case:

Let n = 0. Then 03 − 0 = 0 and 6|0 .

Inductive Hypothesis:

Assume this is true up to n = k, 6|k3 − k.

Induction:

We want to show this is true for n = k + 1, that 6|(k + 1)3 − (k + 1).

We will expand and rearrange (k + 1)3 − (k + 1).

(k + 1)3 − (k + 1) = k3 + 3k2 + 3k + 1− k − 1 =

k3 − k + 3k2 + 3k = (k3 − k) + 3k(k + 1). From our inductive hypothesis we have that k3 − k is

divisible by 6. Examining the second term we see there is a factor of 3 present. Then in order

for our second term to be divisible by 6 we also need a factor of 2. We have both of factor of

k and k + 1. Regardless of the value of k one of these factors is even, meaning there is also a

guaranteed factor of 2 in the second term. Then both terms are divisible by 6 and their sum is also,

6|(k + 1)3 − (k + 1). Then for all n ≥ 0, 6 divides n3 − n. �


