MA0301

ELEMENTARY DISCRETE MATHEMATICS
 NTNU, SPRING 2022

Set 6 Solutions

Exercise 1. Lewis, Zax: Exercise 6.3a.

Solution.
Given that r is an injective function from A to B we know that $f(x)=f(y)$ where $x, y \in A$ implies $x=y$ (the definition of injectivity), i.e. that each image of an element from $a \in A$ is a unique element $f(a) \in B$. Let's say there are $|A|=n$ elements in A, then we know there are n unique images in B corresponding to the n elements in A. Because $|B|=|A|=n$ this implies that for each of the n elements $b \in B$ there is some $a \in A$ such that $f(a)=b$, which is exactly the definition of surjectivity. Then, if r is both injective and surjective, it is also bijective.

Exercise 2. Lewis, Zax: Exercise 6.7.

Solution.
$f^{-1}=\frac{n}{2}$ and $g^{-1}=\frac{n-1}{2}$.
We will call \mathbb{Z} set A, the even integers set B, and the odd integers set C. Then we have that $f: A \rightarrow B$ and $g: A \rightarrow C$. Both f and g are bijections. We want to find a function h such that $h: B \rightarrow C$ and h is bijective. By theorem 6.4 this function exists and can be found using the formula $h(n)=g\left(f^{-1}(n)\right)$.
$h(n)=g\left(\frac{n}{2}\right)=2\left(\frac{n}{2}\right)+1=n+1$. Then $h(n)=n+1$ which clearly maps the even integers to the odd integers and is bijective as desired.

Exercise 3. Use induction to show that: if n is a positive integer, then $\sum_{m=1}^{n} m=1+2+3+\ldots+n=$ $\frac{n(n+1)}{2}$.

Base Case:
Let $n=1$. Then $\sum_{m=1}^{1} m=1=\frac{1(1+1)}{2}$.
Inductive Hypothesis:
Assume this is true up to $n=k, \sum_{m=1}^{k} m=1+2+3+\ldots+k=\frac{k(k+1)}{2}$.
Induction:
We want to show this is true for $n=k+1$, that $\sum_{m=1}^{k+1} m=1+2+3+\ldots+k+(k+1)=$ $\frac{(k+1)((k+1)+1)}{2}=\frac{(k+1)(k+2)}{2}$, based on our assumption.
Starting with our assumption $\sum_{m=1}^{k} m=1+2+3+\ldots+k=\frac{k(k+1)}{2}$, we can add a term of $(k+1)$ to both sides of the equation to get $\left(\sum_{m=1}^{k} m\right)+(k+1)=\frac{k(k+1)}{2}+(k+1)$, which is equivalent to $\sum_{m=1}^{k+1} m=\frac{k(k+1)}{2}+(k+1)=\frac{k(k+1)}{2}+\frac{2(k+1)}{2}$.
$\frac{k(k+1)}{2}+\frac{2(k+1)}{2}=\frac{k(k+1)+2(k+1)}{2}=\frac{(k+1)(k+2)}{2}$.
Then $\sum_{m=1}^{k+1} m=\frac{(k+1)(k+2)}{2}$ and $\sum_{m=1}^{n} m=1+2+3+\ldots+n=\frac{n(n+1)}{2}$ when n is a positive integer.

Exercise 4. Lewis, Zax: Exercise 3.7.
Base Case:
Let $n=1$. Then $\sum_{i=1}^{1} i^{3}=1^{3}=(1)^{2}=\left(\sum_{i=1}^{1} i\right)^{2}$.
Inductive Hypothesis:
Assume this is true up to $n=k, \sum_{i=1}^{k} i^{3}=\left(\sum_{i=1}^{k} i\right)^{2}$.

Induction step: we will prove that the statement is also valid for $k+1$. Splitting the sum and using the induction hypothesis we have that

$$
\begin{aligned}
\left(\sum_{i=1}^{k+1} i\right)^{2} & =\left(\left(\sum_{i=1}^{k} i\right)+(k+1)\right)^{2} \\
& =\left(\sum_{i=1}^{k} i\right)^{2}+2\left(\sum_{i=1}^{k} i\right)(k+1)+(k+1)^{2} \\
& =\sum_{i=1}^{k} i^{3}+2\left(\sum_{i=1}^{k} i\right)(k+1)+(k+1)^{2} \quad \text { (by induction hypothesis) } \\
& =\sum_{i=1}^{k} i^{3}+(k+1)\left(2\left(\sum_{i=1}^{k} i\right)+k+1\right) \quad \text { by Gauss Formula } \sum_{i=1}^{k} i=\frac{k(k+1)}{2} \\
& =\sum_{i=1}^{k} i^{3}+(k+1)\left(2 \frac{k(k+1)}{2}+k+1\right) \quad \\
& =\sum_{i=1}^{k} i^{3}+(k+1)(k(k+1)+(k+1)) \\
& =\sum_{i=1}^{k} i^{3}+(k+1)(k+1)^{2} \\
& =\sum_{i=1}^{k} i^{3}+(k+1)^{3} \\
& =\sum_{i=1}^{k+1} i^{3}
\end{aligned}
$$

that is what we wanted to show. Hence, by mathematical induction, we conclude that for any $n \geq 0, \sum_{i=1}^{n} i^{3}=\left(\sum_{i=1}^{n} i\right)^{2}$.

Exercise 5. a) Find a formula for $\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\ldots+\frac{1}{n(n+1)}$ by examining the values of this expression for small values of n.

Solution.
Examining the values for $n=1,2,3 \ldots$ we can derive the formula that for all $n>0, \sum_{i=1}^{n} \frac{1}{i \cdot(i+1)}=$ $\frac{n}{n+1}$.
b) Use induction to prove the formula you conjectured in part a.

Solution.

Base Case:
Let $n=1$. Then $\sum_{i=1}^{1} \frac{1}{i \cdot(i+1)}=\frac{1}{1 \cdot 2}=\frac{1}{1+1}=\frac{n}{n+1}$.
Inductive Hypothesis:
Assume this is true up to $n=k, \sum_{i=1}^{k} \frac{1}{i \cdot(i+1)}=\frac{k}{k+1}$.
Induction:
We want to show this is true for $n=k+1$, that $\sum_{i=1}^{k+1} \frac{1}{i \cdot(i+1)}=\frac{k+1}{k+2}$.
Starting with our assumption, $\sum_{i=1}^{k} \frac{1}{i \cdot(i+1)}=\frac{k}{k+1}$, we will add a term of $\frac{1}{(k+1)(k+2)}$ to each side of the equation:
$\left(\sum_{i=1}^{k} \frac{1}{i \cdot(i+1)}\right)+\frac{1}{(k+1)(k+2)}=\frac{k}{k+1}+\frac{1}{(k+1)(k+2)}$. This is equivalent to:
$\sum_{i=1}^{k+1} \frac{1}{i \cdot(i+1)}=\frac{k}{k+1}+\frac{1}{(k+1)(k+2)}$.
Then we will simplify $\frac{k}{k+1}+\frac{1}{(k+1)(k+2)}$:
$\frac{k}{k+1}+\frac{1}{(k+1)(k+2)}=\frac{k(k+2)}{(k+1)(k+2)}+\frac{1}{(k+1)(k+2)}=\frac{k(k+2)+1}{(k+1)(k+2)}=\frac{k^{2}+2 k+1}{(k+1)(k+2)}=\frac{(k+1)^{2}}{(k+1)(k+2)}=\frac{k+1}{k+2}$.
Then $\sum_{i=1}^{k+1} \frac{1}{i \cdot(i+1)}=\frac{k+1}{k+2}$ and for all $n>0, \sum_{i=1}^{n} \frac{1}{i \cdot(i+1)}=\frac{n}{n+1}$.
Exercise 6. What is wrong with this "proof"?
"Theorem" For every positive integer n, if x and y are positive integers with $\max (x, y)=n$, then $x=y$.
Basis Step: Suppose that $n=1$. If $\max (x, y)=1$ and x and y are both positive integers we have $x=y$.
Inductive Step: Let k be a positive integer. Assume that whenever $\max (x, y)=k$ and x and y are positive integers, then $x=y$. Now let $\max (x, y)=k+1$, where x and y are positive integers. Then $\max (x-1, y-1)=k$, so by the inductive hypothesis, $x-1=y-1$. It follows that $x=y$, completing the inductive step.

Solution.

In this case we know that x and y are positive integers but we don't know which positive integers. Meaning we do not know if $x-1$ or $y-1$ is a positive integer. If we do not know that $x-1$ or $y-1$ are both positive integers then our assumption no longer applies, and the proof is not valid.

Exercise 7. Use induction to prove that $3^{n}<n!$ if n is an integer greater than 6 .

Solution.
Base Case:
Let $n=7$. Then $3^{7}<7!=2187<5040$.
Inductive Hypothesis:
Assume this is true up to $n=k, 3^{k}<k!$.

Induction:
We want to show this is true for $n=k+1$, that $3^{k+1}<(k+1)$!.
We have that $3^{k}<k$!, then we also have that $3 \cdot 3^{k}<3 \cdot k$!. We know that $k+1>3$, so $3 \cdot 3^{k}<(k+1) \cdot k$! which is equivalent to $3^{k+1}<(k+1)$!.
Then by induction $3^{n}<n$! is true for all $n>6$.
Exercise 8. Use induction to prove that 6 divides $n^{3}-n$ whenever n is a nonnegative integer.

Solution.
Base Case:
Let $n=0$. Then $0^{3}-0=0$ and $6 \mid 0$.
Inductive Hypothesis:
Assume this is true up to $n=k, 6 \mid k^{3}-k$.
Induction:
We want to show this is true for $n=k+1$, that $6 \mid(k+1)^{3}-(k+1)$.
We will expand and rearrange $(k+1)^{3}-(k+1)$.
$(k+1)^{3}-(k+1)=k^{3}+3 k^{2}+3 k+1-k-1=$
$k^{3}-k+3 k^{2}+3 k=\left(k^{3}-k\right)+3 k(k+1)$. From our inductive hypothesis we have that $k^{3}-k$ is divisible by 6. Examining the second term we see there is a factor of 3 present. Then in order for our second term to be divisible by 6 we also need a factor of 2. We have both of factor of k and $k+1$. Regardless of the value of k one of these factors is even, meaning there is also a guaranteed factor of 2 in the second term. Then both terms are divisible by 6 and their sum is also, $6 \mid(k+1)^{3}-(k+1)$. Then for all $n \geq 0,6$ divides $n^{3}-n$.

