MA0301

ELEMENTARY DISCRETE MATHEMATICS

NTNU, SPRING 2022

Solutions SEt 4

Exercise 1. Consider the set $X=\{a, b, c\}$.
a) What is the power set $\mathcal{P}(X)$?
b) Show that for any set Y, the relation defined by set inclusion $R=\{\langle A, B\rangle \mid A \subseteq B\}$ defines a partial ordering on $\mathcal{P}(Y)$.
c) Draw the Hasse diagram for $\mathcal{P}(X)$ with the partial ordering given by set inclusion like in b).

Solution.

a) It's $\mathcal{P}(X)=\{\varnothing,\{a\},\{b\},\{c\},\{a, b\},\{b, c\},\{a, c\}, X\}$
b) We have to check the three defining properties of a partial ordering.

- Reflexivity: For all $A \subset X$, it is true that $A=A$ and thus $A \subseteq A$.
- Transitivity: Let $A \subseteq X, B \subseteq X$ and $C \subseteq X$ such that $A \subseteq B$ and $B \subseteq C$. For $a \in A$ we know that because of $A \subseteq B$ also $a \in B$. Then from $B \subseteq C$ it follows that also $a \in C$. Consequently we have $A \subseteq C$.
- Antisymmetry: If for $A \subseteq X$ and $B \subseteq X$ we have that both i) $A \subseteq B$ and ii) $B \subseteq A$ then, if $a \in A$ it follows from i) that also $a \in B$. If on the other hand $b \in B$ it follows with ii) that also $b \in A$. Consequently we have $A=B$.
c)

Exercise 2. Consider the set $X=\{1,2,3,4,5,6,7,8,9,10,11,12\}$. Define the relation R on X that relates every number in X to those that have the same number of divisors as it.
a) Show that R is an equivalence relation.
b) Find the partition of X corresponding to R.

Solution.
a) We shall prove that R is reflexive, symmetric and transitive.

- Reflexivity: Take $x \in X$. Obviously, x has the same number of divisors as x, thus for all $x \in X$, we have $(x, x) \in R$. Symmetry: Let $x, y \in X$ such that $(x, y) \in R$. By definition of R, we have that y has the same number of divisors as x. This is equivalent to say that x has the same number of divisors as y. Again by definition of R, we have that $(y, x) \in R$. Transitivity: Let $x, y, z \in X$ such that $(x, y),(y, z) \in R$. By definition of R, we have that y has the same number of divisors as x, and z has the same number of divisors as y. The two latter statements imply that z has the same number of divisors as x. Hence $(x, z) \in R$.
From the above, we conclude that R is an equivalence relation.
b) Recall that two elements in X belong to the same block of the partition induced by R (i.e. the same equivalence class) if and only if they have the same number of divisors. By counting the number of divisors of the elements in S, we have
- 1 has only one divisor.
- $2,3,5,7$ and 11 are prime numbers and thus they have 2 divisors.
- 4 and 9 are of the form p^{2} for some prime number p, and thus they have 3 divisors.
- 6 and 10 are of the form $p q$ for some prime numbers p and q. They have 4 divisors. Also, 8 is a cube of the form p^{3} for $p=2$, and so it has 4 divisors.
- Finally, 12 is of the form $2^{2} \cdot 3$, and it has 6 divisors ($1,2,3,4,6,12$).

Hence, the partition is the following: $\{\{1\},\{2,3,5,7,11\},\{4,9\},\{6,8,10\},\{12\}\}$.
Exercise 3. Let $p \in \mathbb{Z}$. Define the following relation

$$
R_{p}=\{\langle x, y\rangle \mid \exists n \in \mathbb{Z}: x=y+n \cdot y\} \subset \mathbb{Z} \times \mathbb{Z}
$$

a) Show that R is an equivalence relation.
b) Characterize the equivalence classes of R_{p}. How many are there for a fixed p ?

Solution.

a) Again we show that R_{p} is reflexive, symmetric and transitive.

- Reflexivity Clearly $x=x+n \cdot p$ for $n=0$.
- Symmetry If $(x, y) \in R_{p}$, then there exists a $n \in \mathbb{Z}$ such that $x=y+n \cdot p$. We then also have $y=x+n^{\prime} \cdot p$ with $n^{\prime}=-n$.
- Transitivity If $(x, y) \in R_{p}$ and $(y, z) \in R_{p}$, then there exist $n_{1}, n_{2} \in \mathbb{Z}$ such that $x=$ $y+n_{1} \cdot p$ and $y=z+n_{2} \cdot p$. With setting $n=n_{1}+n_{2}$ we then have $x=z+n \cdot p$.
b) There are p equivalence classes characterized by the representatives $0,1 \ldots p-1$. The class $[i]$ consists of $[i]=\{\ldots, i-2 \cdot p, i-p, i, i+p, i+2 \cdot p, \ldots\}$.

Exercise 4. a) Let X be a set and let $R_{1} \subseteq X \times X$ and $R_{2} \subseteq X \times X$ be two equivalence relations on X. Show that $R_{1} \cap R_{2}$ also defines an equivalence relation.
b) Let the cardinality of X be finite. Define $R \subseteq X \times X$ to be any relation on X. We make a list with all equivalence relations that contain R :

$$
\left\{R_{1}, R_{2}, \ldots, R_{n}\right\}=\left\{R_{i} \subseteq X \times X \mid\left(R \subseteq R_{i}\right) \wedge\left(R_{i} \text { is an equivalence relation }\right)\right\} .
$$

Note that this list is finite because X has finite cardinality. Prove that $\tilde{R}:=R_{1} \cap R_{2} \cap \ldots \cap$ R_{n} is the smallest equivalence relation on X that contains R i.e that for all equivalence relations $A \subset X \times X$ such that $R \subseteq A$ it follows that $\tilde{R} \subseteq A$. We call \tilde{R} the equivalence relation generated by R.
c) What is the equivalence relation generated by the relation from exercise 1 a)?

Solution.

a) Again we show the three defining properties of an equivalence relation.

- Reflexivity For all $x \in X$ we know that $(x, x) \in R_{1}$ and $(x, x) \in R_{2}$ because both are equivalence relations and thus satisfy reflexivity. Thus (x, x) is also an element of $R_{1} \cap R_{2}$.
- Symmetry If $(x, y) \in R_{1} \cap R_{2}$ we know that $(x, y) \in R_{1}$ and $(x, y) \in R_{2}$. But because both R_{1} and R_{2} are equivalence relations they have to satisfy symmetry and thus also $(y, x) \in R_{1}$ and $(y, x) \in R_{2}$. Consequently we have $(y, x) \in R_{1} \cap R_{2}$.
- Transitivity Let $(x, y) \in R_{1} \cap R_{2}$ and $(y, z) \in R_{1} \cap R_{2}$. Then both of these elements are also in R_{1} and R_{2}. By transitivity of the latter two relations we get $(x, z) \in R_{1}$ and $(x, z) \in R_{2}$. Thus also $(x, z) \in R_{1} \cap R_{2}$.
b) Let $A \subseteq X \times X$ be any equivalence relation such that $R \subseteq A$. Then it follows that A is part of the list of all equivalence relations that contain R, i.e there is some $i \in\{1, \ldots, n\}$ such that $A=R_{i}$. Consequently $\tilde{R} \subset A$.
c) By adding all the necessary elements to R so that the relation becomes symmetric and at the same time stays transitive we quickly end up with all elements in $\mathcal{P}(X)$ being equivalent to one another. This also follows by observing that the Hasse diagram of the relation is path connected (every two vertices in it are connected by a path).

