MA0301 ELEMENTARY DISCRETE MATHEMATICS NTNU, SPRING 2022

Solutions Set 4

Exercise 1. Consider the set $X = \{a, b, c\}$.

- a) What is the power set $\mathcal{P}(X)$?
- b) Show that for any set Y, the relation defined by set inclusion $R = \{\langle A, B \rangle | A \subseteq B\}$ defines a partial ordering on $\mathcal{P}(Y)$.
- c) Draw the Hasse diagram for $\mathcal{P}(X)$ with the partial ordering given by set inclusion like in b).

Solution.

- a) It's $\mathcal{P}(X) = \{ \emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, X \}$
- b) We have to check the three defining properties of a partial ordering.
 - Reflexivity: For all $A \subset X$, it is true that A = A and thus $A \subseteq A$.
 - Transitivity: Let $A \subseteq X$, $B \subseteq X$ and $C \subseteq X$ such that $A \subseteq B$ and $B \subseteq C$. For $a \in A$ we know that because of $A \subseteq B$ also $a \in B$. Then from $B \subseteq C$ it follows that also $a \in C$. Consequently we have $A \subseteq C$.
 - Antisymmetry: If for $A \subseteq X$ and $B \subseteq X$ we have that both i) $A \subseteq B$ and ii) $B \subseteq A$ then, if $a \in A$ it follows from i) that also $a \in B$. If on the other hand $b \in B$ it follows with ii) that also $b \in A$. Consequently we have A = B.

c)

Exercise 2. Consider the set $X = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$. Define the relation R on X that relates every number in X to those that have the same number of divisors as it.

- a) Show that R is an equivalence relation.
- b) Find the partition of X corresponding to R.

Solution.

a) We shall prove that R is reflexive, symmetric and transitive.

Date: February 17, 2022.

Reflexivity: Take x ∈ X. Obviously, x has the same number of divisors as x, thus for all x ∈ X, we have (x, x) ∈ R. Symmetry: Let x, y ∈ X such that (x, y) ∈ R. By definition of R, we have that y has the same number of divisors as x. This is equivalent to say that x has the same number of divisors as y. Again by definition of R, we have that (y, x) ∈ R. Transitivity: Let x, y, z ∈ X such that (x, y), (y, z) ∈ R. By definition of R, we have that y has the same number of divisors as x, and z has the same number of divisors as x. The two latter statements imply that z has the same number of divisors as x. Hence (x, z) ∈ R.

From the above, we conclude that R is an equivalence relation.

- b) Recall that two elements in X belong to the same block of the partition induced by R (i.e. the same equivalence class) if and only if they have the same number of divisors. By counting the number of divisors of the elements in S, we have
 - 1 has only one divisor.
 - 2, 3, 5, 7 and 11 are prime numbers and thus they have 2 divisors.
 - 4 and 9 are of the form p^2 for some prime number p, and thus they have 3 divisors.
 - 6 and 10 are of the form pq for some prime numbers p and q. They have 4 divisors. Also, 8 is a cube of the form p^3 for p = 2, and so it has 4 divisors.
 - Finally, 12 is of the form $2^2 \cdot 3$, and it has 6 divisors (1, 2, 3, 4, 6, 12).

Hence, the partition is the following: $\{\{1\}, \{2, 3, 5, 7, 11\}, \{4, 9\}, \{6, 8, 10\}, \{12\}\}$.

Exercise 3. Let $p \in \mathbb{Z}$. Define the following relation

$$R_p = \{ \langle x, y \rangle | \exists n \in \mathbb{Z} : x = y + n \cdot y \} \subset \mathbb{Z} \times \mathbb{Z}.$$

- a) Show that R is an equivalence relation.
- b) Characterize the equivalence classes of R_p . How many are there for a fixed p?.

Solution.

- a) Again we show that R_p is reflexive, symmetric and transitive.
 - Reflexivity Clearly $x = x + n \cdot p$ for n = 0.
 - Symmetry If $(x, y) \in R_p$, then there exists a $n \in \mathbb{Z}$ such that $x = y + n \cdot p$. We then also have $y = x + n' \cdot p$ with n' = -n.
 - Transitivity If $(x, y) \in R_p$ and $(y, z) \in R_p$, then there exist $n_1, n_2 \in \mathbb{Z}$ such that $x = y + n_1 \cdot p$ and $y = z + n_2 \cdot p$. With setting $n = n_1 + n_2$ we then have $x = z + n \cdot p$.
- b) There are p equivalence classes characterized by the representatives $0, 1 \dots p-1$. The class [i] consists of $[i] = \{\dots, i-2 \cdot p, i-p, i, i+p, i+2 \cdot p, \dots\}$.
- **Exercise 4.** a) Let X be a set and let $R_1 \subseteq X \times X$ and $R_2 \subseteq X \times X$ be two equivalence relations on X. Show that $R_1 \cap R_2$ also defines an equivalence relation.
 - b) Let the cardinality of X be finite. Define $R \subseteq X \times X$ to be any relation on X. We make a list with all equivalence relations that contain R:

 $\{R_1, R_2, \dots, R_n\} = \{R_i \subseteq X \times X | (R \subseteq R_i) \land (R_i \text{ is an equivalence relation})\}.$

Note that this list is finite because X has finite cardinality. Prove that $\tilde{R} := R_1 \cap R_2 \cap \ldots \cap R_n$ is the smallest equivalence relation on X that contains R i.e that for all equivalence relations $A \subset X \times X$ such that $R \subseteq A$ it follows that $\tilde{R} \subseteq A$. We call \tilde{R} the equivalence relation generated by R.

MA0301

c) What is the equivalence relation generated by the relation from exercise 1 a?

Solution.

- a) Again we show the three defining properties of an equivalence relation.
 - Reflexivity For all $x \in X$ we know that $(x, x) \in R_1$ and $(x, x) \in R_2$ because both are equivalence relations and thus satisfy reflexivity. Thus (x, x) is also an element of $R_1 \cap R_2$.
 - Symmetry If $(x, y) \in R_1 \cap R_2$ we know that $(x, y) \in R_1$ and $(x, y) \in R_2$. But because both R_1 and R_2 are equivalence relations they have to satisfy symmetry and thus also $(y, x) \in R_1$ and $(y, x) \in R_2$. Consequently we have $(y, x) \in R_1 \cap R_2$.
 - Transitivity Let $(x, y) \in R_1 \cap R_2$ and $(y, z) \in R_1 \cap R_2$. Then both of these elements are also in R_1 and R_2 . By transitivity of the latter two relations we get $(x, z) \in R_1$ and $(x, z) \in R_2$. Thus also $(x, z) \in R_1 \cap R_2$.
- b) Let $A \subseteq X \times X$ be any equivalence relation such that $R \subseteq A$. Then it follows that A is part of the list of all equivalence relations that contain R, i.e there is some $i \in \{1, \ldots, n\}$ such that $A = R_i$. Consequently $\tilde{R} \subset A$.
- c) By adding all the necessary elements to R so that the relation becomes symmetric and at the same time stays transitive we quickly end up with all elements in $\mathcal{P}(X)$ being equivalent to one another. This also follows by observing that the Hasse diagram of the relation is path connected (every two vertices in it are connected by a path).