MA0301

ELEMENTARY DISCRETE MATHEMATICS

NTNU, SPRING 2022

Solutions Set 3

Exercise 1. Write the following logical statement in prenex normal form:

$$
\neg \forall x(P(x) \Rightarrow \exists y Q(x, y))
$$

Solution. We use the rules $\forall x \neg F \equiv \neg \exists x F, \exists x \neg F \equiv \neg \forall x F$ and the rule of scope change.

$$
\begin{aligned}
& \neg x(P(x) \Rightarrow \exists y Q(x, y)) \\
&=\exists x \neg(P(x) \Rightarrow \exists y Q(x, y)) \\
&= \exists x \neg \exists y(P(x) \Rightarrow Q(x, y)) \\
&= \exists x \forall y \neg(P(x) \Rightarrow Q(x, y))
\end{aligned}
$$

Exercise 2. What is the power set of $A:=\{\{a\},\{b, c\},\{c, d,\{e, f\}\}\}$
Solution.

$$
\begin{aligned}
\mathcal{P}(A)=\{\varnothing, & \{\{a\}\},\{\{b, c\}\},\{\{c, d,\{e, f\}\}\},\{\{a\},\{b, c\}\} \\
& ,\{\{a\},\{c, d,\{e, f\}\}\},\{\{b, c\},\{c, d,\{e, f\}\}\}, A\}
\end{aligned}
$$

Exercise 3. In the universe of real numbers, let $A=\{x \mid 1 \leq x \leq 5\}$ and $B=\{x \mid 3 \leq x \leq 7\}$.
a) What is the intersection $A \cap B$?
b) Let $A \triangle B=\{x \mid x \in A \cup B \wedge x \notin A \cap B\}$. This is also called the symmetric difference of A and B. Find sets C and D such that $A \triangle B=C \cup D$.

Solution.
a) The intersection is $A \cap B=\{x \mid 3 \leq x \leq 5\}$
b) Pick $C=\{x \mid 1 \leq x \leq 3\}$ and $D=\{x \mid 5 \leq x \leq 7\}$.

Exercise 4. Let X and Y be two sets. Prove that $\overline{X-Y}=\bar{X} \cup Y$.
Solution. In general the statement $\bar{A}=\bar{B}$ is equivalent to the statement $A=B$. We observe that

$$
\bar{X} \cup Y=\overline{\overline{\bar{X}} \cup Y}=\overline{X \cap \bar{Y}} .
$$

The statement $\overline{X-Y}=\bar{X} \cup Y$ is thus equivalent to $X-Y=X \cap \bar{Y}$, which in turn is true by definition.

Exercise 5. For two sets X and Y prove that
a) $(\bar{X} \cup Y) \cap(X \cup Y)=Y$
b) $(\bar{X} \cap Y) \cup(X \cap Y)=Y$

Solution. We use the distributive laws for union and intersection.

[^0]a) $(\bar{X} \cup Y) \cap(X \cup Y)=(\bar{X} \cap X) \cup Y=\varnothing \cup Y$
b) $(\bar{X} \cap Y) \cup(X \cap Y)=(\bar{X} \cup X) \cap Y=\mathcal{U} \cap Y=Y$

Exercise 6. Prove that the following three statements are equivalent:

$$
\begin{array}{lll}
\text { i) } \bar{Y}-X=\bar{Y}, & \text { ii) } X \subseteq Y & \text { iii) } X \cap Y=X
\end{array}
$$

Solution. We have to show $i) \Leftrightarrow i i) \Leftrightarrow i i i)$. By Law of Syllogism, this is equivalent to showing $i) \Rightarrow i i) \Rightarrow i i i) \Rightarrow i$.

- $(i) \Rightarrow i i)$) We assume that i) is true and show that then $i i)$ must be true as well. If $a \in X$, then it follows from i) that it is not in \bar{Y}. Consequently $a \in Y$ and it follows that $i i$) is true.
- $(i i) \Rightarrow i i i))$ We assume that $i i)$ is true and show that then $i i i)$ must also be true. If $a \in$ $X \cap Y$, then we also have $a \in X$. If on the other hand $a \in X$ then we can use that because of $X \subseteq Y$ also $a \in Y$ and thus $a \in X \cap Y$.
- $(i i i) \Rightarrow$)) Now we assume that $i i i$) is true. If $a \in \bar{Y}-X$, then also $a \in \bar{Y}$. On the other hand if $a \in \bar{Y}$, then a is not in X because $\bar{X} \cup \bar{Y}=\overline{X \cap Y}=\bar{X}$. Thus $a \in \bar{Y}-X$.

Exercise 7. Lewis, Zax: Exercise 5.4
Solution The cardinality of the power set of A is $\mathcal{P}(\mathcal{A})=2^{n}$. The reason is that every element of A can either be or not be in a given subset of A. Thus every element in A contributes a factor of two to the number of all possible subsets. We thus have that $|\mathcal{P}(A)-\{\{x\} \mid x \in A\}|=2^{n}-n$.

Exercise 8. Lewis, Zax: Exercise 5.5

Solution

a) We have that $|A \times B|=|A| \cdot|B|$. Using the formula $\mathcal{P}(\mathcal{X})=2^{|\mathcal{X}|}$, which is true for every finite set X we find that $|\mathcal{P}(A \times B)|=2^{|A| \cdot|B|}$. On the other hand is $|\mathcal{P}(A)| \cdot|\mathcal{P}(B)|=2^{|A|} \cdot 2^{|B|}$. We find

$$
\frac{|\mathcal{P}(A \times B)|}{|\mathcal{P}(A)| \cdot|\mathcal{P}(B)|}=\frac{2^{|A| \cdot|B|}}{2^{|A|} \cdot 2^{|B|}}=\frac{2^{|A| \cdot|B|}}{2^{|A|+|B|}}
$$

Thus

- $|\mathcal{P}(A)| \cdot|\mathcal{P}(B)|$ is larger than $|\mathcal{P}(A \times B)|$ if the cardinality of A or B is one or either of the two is the empty set.
- They are the same if $|A|=2$ and $|B|=2$, or if both A and B are the empty set.
- $|\mathcal{P}(A \times B)|$ is larger than $|\mathcal{P}(A)| \cdot|\mathcal{P}(B)|$ in all the other cases.
b) We use the distributive law for intersections and show:

$$
\begin{aligned}
& (A-B) \cap(B-A) \\
= & (A \cap \bar{B}) \cap(B \cap \bar{A}) \\
= & A \cap(\bar{B} \cap(B \cap \bar{A})) \\
= & A \cap((\bar{B} \cap B) \cap \bar{A}) \\
= & A \cap(\varnothing \cap \bar{A}) \\
= & A \cap \varnothing \\
= & \varnothing
\end{aligned}
$$

The statement is thus true.

[^0]: Date: February 9, 2022.

