MA0301 ELEMENTARY DISCRETE MATHEMATICS NTNU, SPRING 2022

Solutions Set 1

Exercise 1. Write out the truth table for the following compound statements:

 $a)p \Rightarrow (q \lor r) \quad b)r \Rightarrow (p \Rightarrow q) \quad c)p \Rightarrow (q \Rightarrow \neg r) \lor (p \oplus r)$

 $Can you make the statements in a) and b) \ logically \ equivalent \ by \ just \ adding \ one \ single \ negation?$

Solution. a) The truth table is the following:

p	q	r	$q \vee r$	$p \Rightarrow (q \lor r)$
Т	Т	Т	Т	Т
T	F	Т	Т	Т
F	Т	Т	Т	Т
F	F	Т	Т	Т
Т	Т	\mathbf{F}	Т	Т
T	F	\mathbf{F}	F	F
F	Т	\mathbf{F}	Т	Т
F	F	\mathbf{F}	\mathbf{F}	Т

b) The truth table is the following:

p	q	r	$p \Rightarrow q$	$r \Rightarrow (p \Rightarrow q)$
Т	Т	Т	Т	Т
T	F	Т	\mathbf{F}	\mathbf{F}
F	Т	Т	Т	Т
F	F	Т	Т	Т
Т	Т	F	Т	Т
Т	F	F	\mathbf{F}	Т
F	Т	F	Т	Т
\mathbf{F}	F	F	Т	Т

Date: January 26, 2022.

c) The truth table is the following:

p	q	r	$\neg r$	$q \Rightarrow \neg r$	$p\oplus r$	$(q \Rightarrow \neg r) \lor (p \oplus r)$	$p \Rightarrow (q \Rightarrow \neg r) \lor (p \oplus r)$
Т	Т	Т	\mathbf{F}	F	F	\mathbf{F}	F
T	F	Т	\mathbf{F}	Т	F	Т	Т
F	Т	Т	\mathbf{F}	\mathbf{F}	Т	Т	Т
F	F	Т	\mathbf{F}	Т	Т	Т	Т
T	Т	F	Т	Т	Т	Т	Т
T	F	F	Т	Т	Т	Т	Т
F	Т	F	Т	Т	F	Т	Т
F	\mathbf{F}	F	Т	Т	F	Т	Т

By changing the the expression in b) to $\neg r \Rightarrow (p \Rightarrow q)$ it becomes logically equivalent to the compound statement from a).

Exercise 2. Let p, q and r be propositional variables. Verify whether the following compound statements are satisfiable, tautologies or unsatisfiable. Hint: You may use truth tables but it is also possible to write out shorter arguments in sentences.

 $a)(p \lor q) \lor (p \Rightarrow q) \quad b)[p \Rightarrow (q \land \neg q)] \land p \quad c)[p \Rightarrow (q \land \neg q)] \land p \Rightarrow r$

Solution. a) The impication $(p \Rightarrow q)$ can only have the truth value F when p has the value T. But in this case $(p \lor q)$ always has the truth value T. It follows that the whole compound statement always has the truth value T (that is for any choice of truth values for p and q) and it is thus a tautology.

b) We argue that the whole compound statement can never be true and is thus unsatisfiable. To this end first observe that the statement $(q \land \neg q)$ is always false (unsatisfiable). For this reason $[p \Rightarrow (q \land \neg q)]$ will only be true if p is false. Thus the whole compound statement can never be true.

c) From b) we know that $[p \Rightarrow (q \land \neg q)] \land p \Rightarrow r$ is unsatisfiable and thus always false. It follows that the implication $[p \Rightarrow (q \land \neg q)] \land p \Rightarrow r \Rightarrow r$ is always true (regardless of the truth value r has) and is thus a tautology.

Exercise 3. Let $a, b, c \in \mathbb{R}$ denote real numbers and consider the following statements about them

(1) p : a is smaller than b .	(4) s: a is equal to b.
(2) q : b is smaller than c .	(5) t : b is equal to c .
(3) $r: a$ is smaller than c .	(6) u : a is equal to c .

Translate the following into an English sentence and comment on whether they should be reasonable statements about real numbers.

 $a)p \wedge q \Rightarrow r \quad b)p \wedge q \Rightarrow u \quad c)(p \vee s) \wedge (q \vee t) \wedge u \Rightarrow s$

Solution.

- a) If a is smaller than b and b is smaller than c, then a is smaller than c. This statement is reasonable.
- b) If a is smaller than b and b is smaller than c then a is equal to c. This statement is not reasonable.

MA0301

c) If a is smaller or equal to b and b is smaller or equal to c and a is equal to c, then a is equal to b. This is a reasonable statement.

Exercise 4. If the statement q has the truth value T, determine all truth value assignments for the propositional variables p, r and s for which the truth value of the statement

$$(q \Rightarrow [(p \lor \neg r) \land s]) \land [s \Rightarrow (r \land q)]$$

is T.

Solution. First of all we observe that for the whole compound statement to be true we need that both

- (1) $(q \Rightarrow [(p \lor \neg r) \land s])$ is true
- (2) $[s \Rightarrow (r \land q)]$ is true.

Because q is true that first of these statements can only be true if $[(p \lor \neg r) \land s])$ is true. Thus s needs to have the truth value T. We can use this fact about s, together with requirement 1) to conclude that $(r \land q)$ must be true. Thus r needs to have the truth value T. Because we know that $(p \lor \neg r)$ needs to be true it follows now that also p has to have the truth value T. This shows that if the whole compound statement and q have the truth value T, then p, r and s have the truth value T as well. Thus the only choice of truth value assignments for p, r and s is that they are all T.

Exercise 5. Negate each of the following and simplify the resulting statement

$$a)(p \land q) \Rightarrow (\neg r \lor \neg s) \quad b)p \Rightarrow (r \oplus s)$$

Solution.

a) Recall the equivalence $a \Rightarrow b \equiv \neg a \lor b$ and the DeMorgan's laws $\neg (a \lor b) \equiv \neg a \land \neg b$ and $\neg (a \land b) \equiv \neg a \lor \neg b$. Hence

$$\neg [(p \land q) \Rightarrow (\neg r \lor \neg s)] \equiv \neg [\neg (p \land q) \lor (\neg r \lor \neg s)] \equiv (p \land q) \land \neg (\neg r \lor \neg s) \equiv p \land q \land r \land s$$

b) Similarly to a) but now also using the logical equivalence $p \oplus q \equiv (p \land \neg q) \lor (\neg p \land q)$ we get

$$\neg [p \Rightarrow (r \oplus s)] \equiv \neg [\neg p \lor [(r \land \neg s) \lor (\neg r \land s)]] \equiv p \land \neg (r \land \neg s) \land \neg (\neg r \land s)$$
$$\equiv p \land (\neg r \lor s) \land (r \lor \neg s) \equiv p \land (r \Leftrightarrow s)$$

Exercise 6. Lewis, Zax: Exercise 9.3.

Solution. Let p, q and r be propositional variables. We construct the following truth table

p	q	r	$p \vee q$	$(p \lor q) \lor r$	$q \vee r$	$p \vee (q \vee r)$
Т	Т	Т	Т	Т	Т	Т
Т	Т	F	Т	Т	Т	Т
Т	F	Т	Т	Т	Т	Т
Т	\mathbf{F}	F	Т	Т	F	Т
F	Т	Т	Т	Т	Т	Т
F	Т	F	Т	Т	Т	Т
F	F	Т	F	Т	Т	Т
F	\mathbf{F}	\mathbf{F}	F	\mathbf{F}	\mathbf{F}	F

Since the fifth and the seventh columns are identical, then we have that $(p \lor q) \lor r \equiv p \lor (q \lor r)$. Now, for the case of \land , we have the following truth table

p	q	r	$p \wedge q$	$(p \wedge q) \wedge r$	$q \wedge r$	$p \wedge (q \wedge r)$
Т	Т	Т	Т	Т	Т	Т
Т	Т	F	Т	F	F	F
Т	F	Т	F	\mathbf{F}	F	\mathbf{F}
T	F	F	F	\mathbf{F}	F	\mathbf{F}
F	Т	Т	F	F	Т	F
F	Т	F	F	\mathbf{F}	F	\mathbf{F}
F	F	Т	F	F	F	F
F	F	F	F	\mathbf{F}	F	F

Since the fifth and the seventh columns are identical, then we have that $(p \land q) \land r \equiv p \land (q \land r)$. \Box

Exercise 7. Lewis, Zax: Exercise 9.5. Using a truth table, determine whether each of the following compound propositions is satisfiable, a tautology, or unsatisfiable.

a)
$$p \Rightarrow (p \lor q)$$
, b) $\neg (p \Rightarrow (p \lor q))$, c) $p \Rightarrow (p \Rightarrow q)$

Solution. a) The truth table is the following:

p	q	$p \vee q$	$p \Rightarrow (p \lor q)$
Т	Т	Т	Т
Т	F	Т	Т
F	Т	Т	Т
F	F	F	Т

Since the last column consists only of T's, we have that the proposition is a tautology. b) Using the above table, we have

p	q	$p \Rightarrow (p \lor q)$	$\neg(p \Rightarrow (p \lor q))$
Т	Т	Т	F
Т	Т	Т	\mathbf{F}
F	Т	Т	\mathbf{F}
F	F	Т	\mathbf{F}

Since the last column consists only of T's, we have that the proposition is unsatisfiable. c) The truth table is the following

p	q	$p \Rightarrow q$	$p \Rightarrow (p \Rightarrow q)$
Т	Т	Т	Т
Т	F	F	\mathbf{F}
\mathbf{F}	Т	Т	Т
F	F	Т	Т

Since there is an assignment of truth values for p and q such that the compound statement is true, we have that the statement is satisfiable.

Exercise 8. Lewis, Zax: Exercise 9.6 a.

Solution. Using the propositions p = "I study", q = "I will pass the course", and r = "The professor accepts bribes", translate the following into statements of propositional logic:

- (1) If I do not study, then I will only pass the course if the professor accepts bribes: $\neg p \Rightarrow (q \Rightarrow r)$.
- (2) If the professor accepts bribes, then I do not study: $r \Rightarrow \neg p$.
- (3) The professor does not accept bribes, but I study and will pass the course: $\neg r \land (p \land q)$.
- (4) If I study, the professor will accept bribes and I will pass the course: $p \Rightarrow (r \land q)$.
- (5) I will not pass the course but the professor accepts bribes: $\neg q \wedge r$.