ELEMENTARY DISCRETE MATHEMATICS

NTNU, SPRING 2022

Set 7 Solutions

Exercise 1. Lewis, Zax: Exercise 4.1.

Solution.

Base cases.
$P(4): a_{4}=a_{3}+a_{1}=9$ and $3 \mid 9$.
$P(5): a_{5}=a_{4}+a_{2}=9+6=15$ and $3 \mid 15$.
$P(6): a_{6}=a_{5}+a_{3}=15+9=24$ and $3 \mid 24$.
$P(7): a_{7}=a_{6}+a_{4}=24+15=39$ and $3 \mid 39$.
Inductive hypothesis.
Let $n \geq 7$ be some fixed number and assume that for all m such that $1 \leq m \leq n$ it holds that a_{m} is divisible by $3\left(3 \mid a_{m}\right)$.
Induction.
Show $P(n+1)$; that is, $a_{n+1}=a_{n}+a_{n-2}$ is divisible by 3 .
$a_{n+1}=a_{n}+a_{n-2}$, we know that both a_{n} and a_{n-2} are divisible by 3 since both $n, n-2 \leq n$. Then we know the sum of a_{n} and a_{n-2} is divisible by 3 as well since we can write $a_{n}=3 k_{1}$ and $a_{n-2}=3 k_{2}$, for some $k_{1}, k_{2} \in \mathbb{Z}$. Then $a_{n}+a_{n-2}=3 k_{1}+3 k_{2}=3\left(k_{1}+k_{2}\right)=a_{n+1}$. Then for all n, a_{n} is divisible by 3 .

Exercise 2. Lewis, Zax: Exercise 4.2.

Solution.

Base cases.
$P(8): 8 \stackrel{?}{=} 3 a+5 b$ for some $a, b \in \mathbb{Z}$. Let $a=-24$ and $b=16$. Then $3 a+5 b=-72+80=8$.
$P(9): 9 \stackrel{?}{=} 3 a+5 b$ for some $a, b \in \mathbb{Z}$. Let $a=-27$ and $b=18$. Then $3 a+5 b=-81+90=9$.
$P(10): 10 \stackrel{?}{=} 3 a+5 b$ for some $a, b \in \mathbb{Z}$. Let $a=-30$ and $b=20$. Then $3 a+5 b=-90+100=10$.
Inductive hypothesis.
Let $n \geq 10$ be some fixed number and assume that for all m such that $1 \leq m \leq n$ it holds that $m=3 a+5 b$ for some $a, b \in \mathbb{Z}$.
Induction.
Show $P(n+1)$; that is, $n+1=3 a+5 b$ for some $a, b \in \mathbb{Z}$. We know that we can write $n=3 a^{\prime}+5 b^{\prime}$ for some $a^{\prime}, b^{\prime} \in \mathbb{Z}$ since $n \leq n$. So we have, $n+1=\left(3 a^{\prime}+5 b^{\prime}\right)+1$. We also have that $1 \leq n$, and for $a^{\prime \prime}=-3$ and $b^{\prime \prime}=2,3 a^{\prime \prime}+5 b^{\prime \prime}=1$. Then $n+1=\left(3 a^{\prime}+5 b^{\prime}\right)+\left(3 a^{\prime \prime}+5 b^{\prime \prime}\right)=3\left(a^{\prime}+a^{\prime \prime}\right)+5\left(b^{\prime}+b^{\prime \prime}\right)$ where $a=a^{\prime}+a^{\prime \prime}$ and $b=b^{\prime}+b^{\prime \prime}$. Then for all $n \geq 8$ we have that $n=3 a+5 b$ for some $a, b \in \mathbb{Z}$.

Exercise 3. Lewis, Zax: Exercise 4.5.

Solution.

Base cases
$P(4): a_{4}=a_{3}+a_{2}+a_{1}=3+2+1=6$, and $6<16=2^{4}$.
$P(5): a_{5}=a_{4}+a_{3}+a_{2}=6+3+2=11$, and $11<32=2^{5}$.
$P(6): a_{6}=a_{5}+a_{4}+a_{3}=11+6+3=20$, and $20<64=2^{6}$.
Inductive hypothesis.
Let $n \geq 6$ be some fixed number and assume that for all m such that $1 \leq m \leq n$ it holds that $a_{m}<2^{m}$.
Induction.
Show $P(n+1)$; that is, $a_{n+1}<2^{n+1}$.
We have $a_{n+1}=a_{n}+a_{n-1}+a_{n-2}$ and we know that $a_{n}<2^{n}, a_{n-1}<2^{n-1}$, and $a_{n-2}<2^{n-2}$ since $n, n-1, n-2 \leq n$. Then $a_{n+1}<2^{n}+2^{n-1}+2^{n-2}$. Factoring the right side of the inequality we get $a_{n+1}<2^{n-2}\left(2^{2}+2+1\right)=2^{n-2}(7)$. We have that $7<8=2^{3}$. Then $a_{n+1}<2^{n-2}\left(2^{3}\right)=2^{n+1}$, and for all $n \geq 4, a_{n}<2^{n}$.

Exercise 4. Use strong induction to show that any positive integer greater than 1 can be written as a product of primes.

Solution.

Base cases.
$P(2)=2$.
Inductive hypothesis.
Let $n \geq 2$ be some fixed number and assume that for all m such that $1 \leq m \leq n$ it holds that n can be written as a product of primes.
Induction.
Show $P(n+1)$; that is, $n+1=q_{1} q_{2} \ldots q_{n}$ where q_{i} is some prime and $1 \leq i \leq n$.
There are two cases: one in which $n+1$ is a prime (in which case we are done) or $n+1$ is composite.
In this second case $n+1$ can be written as a product $n+1=a b$, but both $a, b \leq n$ meaning they both can be written as a product of primes. Then $n+1=a b=q_{1} q_{2} \ldots q_{n} \cdot q_{1}^{\prime} q_{2}^{\prime} \ldots q_{n}^{\prime}$, and $n+1$ can be written as a product of primes. Then for any $n \in \mathbb{Z}$ where $n \geq 1, n$ can be written as a product of primes.

Exercise 5. Lewis, Zax: Exercise 8.1.

Solution.

Define \# ${ }_{a}(s)$ inductively.
Base case.
$\#_{a}(\lambda)=0$.
Constructor cases.
Given $\#_{a}(s)=n$ where $s \in \Sigma^{*}$ and $x \in \Sigma$:
(C1) If $x=a$ then $\#_{a}(x \cdot s)=\#_{a}(s)+1=n+1$.
(C2) If $x \neq a$ then $\#_{a}(x \cdot s)=\#_{a}(s)=n$.
Prove by structural induction that:
$\#_{a}(s \cdot t)=\#_{a}(s)+\#_{a}(t)$.
We define $P(n)$ as $\#_{a}(s \cdot n)=\#_{a}(s)+\#_{a}(n)$.
Base case.
$P(\lambda): \#_{a}(s \cdot \lambda)=\#_{a}(s)=\#_{a}(s)+0=\#_{a}(s)+\#_{a}(\lambda)$.
Inductive Hypothesis.
Assume this is true up to t, that is $P(t): \#_{a}(s \cdot t)=\#_{a}(s)+\#_{a}(t)$.
Induct.
Show this is true for $t \cdot u$, that is $P(t \cdot u)$, where $u \in \Sigma$. We want to show that $\#_{a}(s \cdot t \cdot u)=$ $\#_{a}(s)+\#_{a}(t \cdot u)$.
If $u=a$:
By inductive definition: $\#_{a}(s \cdot t \cdot u)=\#_{a}(s \cdot t)+1$.
By inductive hypothesis: $\#_{a}(s \cdot t \cdot u)=\#_{a}(s)+\#_{a}(t)+1$.
By inductive definition: $\#_{a}(s \cdot t \cdot u)=\#_{a}(s)+\#_{a}(t \cdot u)$.

If $u \neq a$:
By inductive definition: $\#_{a}(s \cdot t \cdot u)=\#_{a}(s \cdot t)+0$.
By inductive hypothesis: $\#_{a}(s \cdot t \cdot u)=\#_{a}(s)+\#_{a}(t)+0$.
By inductive definition: $\#_{a}(s \cdot t \cdot u)=\#_{a}(s)+\#_{a}(t \cdot u)$.
Then we have that $P(t \cdot u)$ holds and that $\#_{a}(s \cdot t)=\#_{a}(s)+\#_{a}(t)$ is true for any strings s, t.
Exercise 6. Lewis, Zax: Exercise 8.4.
Solution.
We will use structural induction to prove that $|u \cdot v|=|u|+|v|$.
We define $P(n)$ as $|u \cdot n|=|u|+|n|$.
Base case.
$P(\lambda):|u \cdot \lambda|=|u|=|u|+0=|u|+|\lambda|$.
Inductive hypothesis.
Assume this is true up to t, that is $P(t)|u \cdot t|=|u|+|t|$.
Induct.
We want to show this is true for $t \cdot a$, that $P(t \cdot a)$ holds, where $a \in \Sigma$, i.e. that $|u \cdot t \cdot a|=|u|+|t \cdot a|$.
By inductive definition: $|u \cdot t \cdot a|=|u \cdot t|+1$.
By inductive hypothesis: $|u \cdot t \cdot a|=|u|+|t|+1$.
By inductive definition: $|u \cdot t \cdot a|=|u|+|t \cdot a|$.
Then we have that $P(t \cdot a)$ holds and that $|u \cdot v|=|u|+|v|$ is true for any strings u, v.
Exercise 7. Lewis, Zax: Exercise 13.1.

Solution.

$b \rightarrow c \rightarrow c \rightarrow d$.
Exercise 8. Lewis, Zax: Exercise 13.3.

Solution.

a.
$i d(a)=1$
$o d(a)=2$
$i d(b)=1$
$o d(b)=2$
$i d(c)=2$
$o d(c)=2$
$i d(d)=2$
$o d(d)=2$
$i d(e)=2$
$o d(e)=0$
b.
$a \rightarrow d \rightarrow b \rightarrow a$.
$a \rightarrow c \rightarrow d \rightarrow b \rightarrow a$.
$b \rightarrow c \rightarrow d$.
c.
$d(a, a)=3$
$d(a, b)=2$
$d(a, c)=1$
$d(a, d)=1$
$d(a, e)=2$
$d(b, a)=1$
$d(b, b)=3$
$d(b, c)=1$
$d(b, d)=2$
$d(b, e)=2$
$d(c, a)=3$
$d(c, b)=2$
$d(c, c)=3$
$d(c, d)=1$
$d(c, e)=1$
$d(d, a)=2$
$d(d, b)=1$
$d(d, c)=2$
$d(d, d)=3$
$d(d, e)=1$
$d(e, a)=\infty$
$d(e, b)=\infty$
$d(e, c)=\infty$
$d(e, d)=\infty$
$d(e, e)=\infty$

