MA0301 ELEMENTARY DISCRETE MATHEMATICS NTNU, SPRING 2022

Set 7 Solutions

Exercise 1. Lewis, Zax: Exercise 4.1.

Solution.

Base cases.

$$\begin{split} P(4) &: a_4 = a_3 + a_1 = 9 \text{ and } 3|9. \\ P(5) &: a_5 = a_4 + a_2 = 9 + 6 = 15 \text{ and } 3|15. \\ P(6) &: a_6 = a_5 + a_3 = 15 + 9 = 24 \text{ and } 3|24. \\ P(7) &: a_7 = a_6 + a_4 = 24 + 15 = 39 \text{ and } 3|39. \end{split}$$

Inductive hypothesis.

Let $n \ge 7$ be some fixed number and assume that for all m such that $1 \le m \le n$ it holds that a_m is divisible by 3 $(3|a_m)$.

Induction.

Show P(n+1); that is, $a_{n+1} = a_n + a_{n-2}$ is divisible by 3.

 $a_{n+1} = a_n + a_{n-2}$, we know that both a_n and a_{n-2} are divisible by 3 since both $n, n-2 \le n$. Then we know the sum of a_n and a_{n-2} is divisible by 3 as well since we can write $a_n = 3k_1$ and $a_{n-2} = 3k_2$, for some $k_1, k_2 \in \mathbb{Z}$. Then $a_n + a_{n-2} = 3k_1 + 3k_2 = 3(k_1 + k_2) = a_{n+1}$. Then for all n, a_n is divisible by 3.

Exercise 2. Lewis, Zax: Exercise 4.2.

Solution.

Base cases.

 $P(8): 8 \stackrel{?}{=} 3a + 5b$ for some $a, b \in \mathbb{Z}$. Let a = -24 and b = 16. Then 3a + 5b = -72 + 80 = 8. $P(9): 9 \stackrel{?}{=} 3a + 5b$ for some $a, b \in \mathbb{Z}$. Let a = -27 and b = 18. Then 3a + 5b = -81 + 90 = 9. $P(10): 10 \stackrel{?}{=} 3a + 5b$ for some $a, b \in \mathbb{Z}$. Let a = -30 and b = 20. Then 3a + 5b = -90 + 100 = 10. Inductive hypothesis.

Let $n \ge 10$ be some fixed number and assume that for all m such that $1 \le m \le n$ it holds that m = 3a + 5b for some $a, b \in \mathbb{Z}$.

Induction.

Show P(n+1); that is, n+1 = 3a+5b for some $a, b \in \mathbb{Z}$. We know that we can write n = 3a'+5b' for some $a', b' \in \mathbb{Z}$ since $n \le n$. So we have, n+1 = (3a'+5b')+1. We also have that $1 \le n$, and for a'' = -3 and b'' = 2, 3a''+5b'' = 1. Then n+1 = (3a'+5b')+(3a''+5b'') = 3(a'+a'')+5(b'+b'') where a = a'+a'' and b = b'+b''. Then for all $n \ge 8$ we have that n = 3a+5b for some $a, b \in \mathbb{Z}$. \Box

Exercise 3. Lewis, Zax: Exercise 4.5.

Date: March 1, 2022.

Solution.

Base cases. $P(4): a_4 = a_3 + a_2 + a_1 = 3 + 2 + 1 = 6$, and $6 < 16 = 2^4$. $P(5): a_5 = a_4 + a_3 + a_2 = 6 + 3 + 2 = 11$, and $11 < 32 = 2^5$. $P(6): a_6 = a_5 + a_4 + a_3 = 11 + 6 + 3 = 20$, and $20 < 64 = 2^6$. Inductive hypothesis.

Let $n \ge 6$ be some fixed number and assume that for all m such that $1 \le m \le n$ it holds that $a_m < 2^m$.

Induction.

Show P(n+1); that is, $a_{n+1} < 2^{n+1}$.

We have $a_{n+1} = a_n + a_{n-1} + a_{n-2}$ and we know that $a_n < 2^n$, $a_{n-1} < 2^{n-1}$, and $a_{n-2} < 2^{n-2}$ since $n, n-1, n-2 \le n$. Then $a_{n+1} < 2^n + 2^{n-1} + 2^{n-2}$. Factoring the right side of the inequality we get $a_{n+1} < 2^{n-2}(2^2 + 2 + 1) = 2^{n-2}(7)$. We have that $7 < 8 = 2^3$. Then $a_{n+1} < 2^{n-2}(2^3) = 2^{n+1}$, and for all $n \ge 4$, $a_n < 2^n$.

Exercise 4. Use strong induction to show that any positive integer greater than 1 can be written as a product of primes.

Solution.

Base cases.

P(2) = 2.

Inductive hypothesis.

Let $n \ge 2$ be some fixed number and assume that for all m such that $1 \le m \le n$ it holds that n can be written as a product of primes.

Induction.

Show P(n+1); that is, $n+1 = q_1q_2...q_n$ where q_i is some prime and $1 \le i \le n$.

There are two cases: one in which n+1 is a prime (in which case we are done) or n+1 is composite. In this second case n+1 can be written as a product n+1 = ab, but both $a, b \le n$ meaning they both can be written as a product of primes. Then $n+1 = ab = q_1q_2...q_n \cdot q'_1q'_2...q'_n$, and n+1 can be written as a product of primes. Then for any $n \in \mathbb{Z}$ where $n \ge 1$, n can be written as a product of primes.

Exercise 5. Lewis, Zax: Exercise 8.1.

Solution. Define $\#_a(s)$ inductively. Base case. $\#_a(\lambda) = 0.$ Constructor cases. Given $\#_a(s) = n$ where $s \in \Sigma^*$ and $x \in \Sigma$: (C1) If x = a then $\#_a(x \cdot s) = \#_a(s) + 1 = n + 1$. (C2) If $x \neq a$ then $\#_a(x \cdot s) = \#_a(s) = n$. Prove by structural induction that: $\#_a(s \cdot t) = \#_a(s) + \#_a(t)$. We define P(n) as $\#_a(s \cdot n) = \#_a(s) + \#_a(n)$. Base case.

 $\mathbf{2}$

NTNU, SPRING 2022

3

 $P(\lambda): \#_a(s \cdot \lambda) = \#_a(s) = \#_a(s) + 0 = \#_a(s) + \#_a(\lambda).$ Inductive Hypothesis. Assume this is true up to t, that is $P(t) : \#_a(s \cdot t) = \#_a(s) + \#_a(t)$.

Induct. Show this is true for $t \cdot u$, that is $P(t \cdot u)$, where $u \in \Sigma$. We want to show that $\#_a(s \cdot t \cdot u) =$ $\#_a(s) + \#_a(t \cdot u).$

If u = a:

MA0301

By inductive definition: $\#_a(s \cdot t \cdot u) = \#_a(s \cdot t) + 1.$ By inductive hypothesis: $\#_a(s \cdot t \cdot u) = \#_a(s) + \#_a(t) + 1$. By inductive definition: $\#_a(s \cdot t \cdot u) = \#_a(s) + \#_a(t \cdot u).$

If $u \neq a$:

By inductive definition: $\#_a(s \cdot t \cdot u) = \#_a(s \cdot t) + 0.$ By inductive hypothesis: $\#_a(s \cdot t \cdot u) = \#_a(s) + \#_a(t) + 0.$ By inductive definition: $\#_a(s \cdot t \cdot u) = \#_a(s) + \#_a(t \cdot u).$ Then we have that $P(t \cdot u)$ holds and that $\#_a(s \cdot t) = \#_a(s) + \#_a(t)$ is true for any strings s, t. \Box

Exercise 6. Lewis, Zax: Exercise 8.4.

Solution.

We will use structural induction to prove that $|u \cdot v| = |u| + |v|$. We define P(n) as $|u \cdot n| = |u| + |n|$. Base case. $P(\lambda) : |u \cdot \lambda| = |u| = |u| + 0 = |u| + |\lambda|.$ Inductive hypothesis. Assume this is true up to t, that is $P(t) |u \cdot t| = |u| + |t|$. Induct. We want to show this is true for $t \cdot a$, that $P(t \cdot a)$ holds, where $a \in \Sigma$, i.e. that $|u \cdot t \cdot a| = |u| + |t \cdot a|$. By inductive definition: $|u \cdot t \cdot a| = |u \cdot t| + 1$. By inductive hypothesis: $|u \cdot t \cdot a| = |u| + |t| + 1$. By inductive definition: $|u \cdot t \cdot a| = |u| + |t \cdot a|$. Then we have that $P(t \cdot a)$ holds and that $|u \cdot v| = |u| + |v|$ is true for any strings u, v.

Exercise 7. Lewis, Zax: Exercise 13.1.

Solution. $b \to c \to c \to d$.

Exercise 8. Lewis, Zax: Exercise 13.3.

Solution.

a. id(a) = 1od(a) = 2id(b) = 1od(b) = 2id(c) = 2

od(c) = 2id(d) = 2od(d) = 2id(e) = 2od(e) = 0b. $a \rightarrow d \rightarrow b \rightarrow a.$ $a \to c \to d \to b \to a.$ $b \rightarrow c \rightarrow d.$ c. d(a,a) = 3d(a,b) = 2d(a,c) = 1d(a,d) = 1d(a, e) = 2d(b,a) = 1d(b,b) = 3d(b,c) = 1d(b,d) = 2d(b, e) = 2d(c,a) = 3d(c,b) = 2d(c,c) = 3d(c,d) = 1d(c, e) = 1d(d,a) = 2d(d,b) = 1d(d,c) = 2d(d,d) = 3d(d, e) = 1 $d(e,a) = \infty$ $d(e,b) = \infty$ $d(e,c) = \infty$ $d(e,d) = \infty$ $d(e, e) = \infty$