MA0301 ELEMENTARY DISCRETE MATHEMATICS NTNU, SPRING 2022

Set 5

Deadline: Deadline: Monday 21.02.2022, 11:59 pm

Exercise 1. Define the following relation on the set \mathbb{N} of natural numbers.

 $R = \{ (m, n) \in \mathbb{N} \times \mathbb{N} | \exists l \in \mathbb{N} : n = lm \}$

Show that R defines a partial order.

Exercise 2. Consider:

- 1. The relation $R = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} | x = y + 2\}.$
- 2. The relation $R = \{(x, y) \in \mathbb{R} \times \mathbb{R} | x = \sin(y) \}.$
- 3. For $p \in \mathbb{Z}$ the relation $R_p \subseteq \mathbb{Z} \times \mathbb{Z}$ from exercise 3 of set-4.
- 4. For $p \in \mathbb{Z}$, denote by \mathbb{Z}_p the set of equivalence classes of the relation R_p from exercise 3 of set-4. Define the relation $f_p = \{\langle x, y \rangle | x \in y\} \subseteq \mathbb{Z} \times \mathbb{Z}_p$.
- a) Which of the above relations defines a function? Justify your answer. (Hint: In 3. the answer might be different for different choices of p).
- b) For those relations that define functions decide whether they are injective, surjective or bijective.

Exercise 3. Let X be a set and $R \subseteq X \times X$ an equivalence relation. Denote by (X/R) the set of equivalence classes of R. Define the relation

$$f_R = \{ \langle x, y \rangle \in X \times (X/R) | x \in y \}$$

- a) Show that f_R defines a surjective function. If you manage to do so you may use this fact for Exercise 2.
- b) Define an injective function $f_R^{-1} \subseteq (X/R) \times X$, that has f_R as an inverse.

Exercise 4. Let $X = \{(i, j) : i, j \in \{1, ..., 8\}\}$ denote the squares of a chess board. Define the relation $R \subseteq X \times X$, where $(x, y) \in R$, if and only if a knight on the square a, on an otherwise empty chessboard, can reach the square b with finitely many moves.

- a) Show that $((1, 1), (3, 1)) \in R$.
- b) Show that R is an equivalence relation.
- c) Determine the equivalence classes of R.

Exercise 5. Lewis, Zax: Exercise 6.1

Exercise 6. Lewis, Zax: Exercise 6.2

Date: February 11, 2022.