MA0301

ELEMENTARY DISCRETE MATHEMATICS
 NTNU, SPRING 2021

Set 5
Deadline: Wednesday 3 March, 2021, 23:59.
Exercise 1. Show that for all integers $m>0$

$$
\sum_{j=1}^{m} \frac{1}{j(j+2)}=\frac{m(3 m+5)}{4(m+1)(m+2)}
$$

Solution. We will prove the statement by mathematical induction on m. The base case $m=1$ is straightforward since $\frac{1}{1(1+2)}=\frac{1}{3}=\frac{1(3+5)}{4(1+1)(1+2)}$. For the inductive hypothesis, assume that the statement is true for some positive integer $m=k \geq 1$, i.e., we suppose that $\sum_{j=1}^{k} \frac{1}{j(j+2)}=\frac{k(3 k+5)}{4(k+1)(k+2)}$. For the inductive step, we will prove that the statement is also true for $m=k+1$. Indeed, by splitting the sum and using the inductive hypothesis, we have that

$$
\begin{aligned}
\sum_{j=1}^{k+1} \frac{1}{j(j+2)} & =\sum_{j=1}^{k} \frac{1}{j(j+2)}+\frac{1}{(k+!)(k+3)} \\
& =\frac{k(3 k+5)}{4(k+1)(k+2)}+\frac{1}{(k+1)(k+3)} \\
& =\frac{k(3 k+5)(k+1)(k+3)+4(k+1)(k+2)}{4(k+1)^{2}(k+2)(k+3)} \\
& =\frac{k(3 k+5)(k+3)+4(k+2)}{4(k+1)(k+2)(k+3)} \\
& =\frac{(k+1) k(3 k+5)+2 k(3 k+5)+4(k+1)+4}{4(k+1)(k+2)(k+3)} \\
& =\frac{(k+1)(k(3 k+5)+4)+6 k^{2}+10 k+4}{4(k+1)(k+2)(k+3)} \\
& =\frac{(k+1)(k(3 k+5)+4)+(k+1)(6 k+4)}{4(k+1)(k+2)(k+3)} \\
& =\frac{3 k^{2}+11 k+8}{4(k+2)(k+3)} \\
& =\frac{(k+1)(3 k+8)}{4(k+2)(k+3)} \\
& =\frac{(k+1)(3(k+1)+5)}{4((k+1)+1)((k+1)+2)}
\end{aligned}
$$

Hence the formula is true for $k+1$. By the mathematical induction principle, we conclude that the formula es true for any $m \in \mathbb{N}$.

Exercise 2. Show that for all non-negative integers m, we have that 3 divides the number $a_{m}=2^{2 m+1}+1$.

Solution. By mathematical induction on m. For the base case $m=1$, we have that $a_{1}=2^{2+1}+1=9$ and clearly $3 \mid a_{1}$. For the inductive hypothesis, assume that 3 divides to $a_{k}=2^{2 k+1}+1$, for some positive integer $k \geq 1$. We will prove that $3 \mid a_{k+1}$. Indeed, notice that

$$
a_{k+1}=2^{2 k+3}+1=2^{2} \cdot 2^{2 k+1}+1=(3+1) 2^{2 k+1}+1=3 \cdot 2^{2 k+1}+2^{2 k+1}+1=3 \cdot 2^{2 k+1}+a_{k}
$$

By induction hypothesis, we have that $3 \mid a_{k}$. Since we clearly have that $3 \mid 3 \cdot 2^{2 k+1}$, we can conclude that $3 \mid\left(3 \cdot 2^{2 k+1}+a_{k}\right)$ and hence $3 \mid a_{k+1}$, as we wanted. By mathematical induction, we conclude that 3 divides a_{m}, for any $m \in \mathbb{N}$.

Exercise 3. Let $\left\{L_{n}\right\}$, $n \geq 0$ be the sequence of Lucas numbers, which are defined recursively, i.e., for $n>1, L_{n}=L_{n-1}+L_{n-2}, L_{0}=2, L_{1}=1$. Show that for positive integers m

$$
\sum_{i=1}^{m} i L_{i}=m L_{m+2}-L_{m+3}+4
$$

Solution. By induction on m. For the base case $m=1$, we have $1 \cdot \ell_{1}=1$ and $1 \cdot \ell_{3}-\ell_{4}+4=4-7+4=1$. Now, assume that the formula holds for a positive integer $k \geq 1$. We will prove the result for $k+1$. By splitting the sum and using the inductive hypothesis, we have

$$
\begin{aligned}
\sum_{i=1}^{k+1} i \ell_{i} & =\sum_{i=1}^{k} i \ell_{i}+(k+1) \ell_{k+1} \\
& =k \ell_{k+2}-\ell_{k+3}+4+(k+1) \ell_{k+1} \\
& =k\left(\ell_{k+2}+\ell_{k+1}\right)+\ell_{k+1}-\ell_{k+3}+4 \\
& =(k-1) \ell_{k+3}+\ell_{k+1}+4+2 \ell_{k+3}-2 \ell_{k+3} \\
& =(k+1) \ell_{k+3}+\ell_{k+1}-\ell_{k+3}-\ell_{k+3}+4 \\
& =(k+1) \ell_{k+3}+\ell_{k+1}-\ell_{k+1}-\ell_{k+2}-\ell_{k+3}+4 \\
& =(k+1) \ell_{k+3}-\ell_{k+2}-\ell_{k+3}+4 \\
& =(k+1) \ell_{k+3}-\ell_{k+4}+4
\end{aligned}
$$

where we used the definition of Lucas' numbers. Hence the formula holds for $k+1$. By mathematical induction, we have that $\sum_{i=1}^{m} i \ell_{i}=m \ell_{m+2}-\ell_{m+3}+4$ for any $m \geq 1$.

Exercise 4. Show that for all integers $m>0$

$$
\sum_{i=1}^{m}(-1)^{i+1} i^{2}=(-1)^{m+1} \sum_{i=1}^{m} i
$$

Solution. By induction on m. For the base case $m=1$, observe that $(-1)^{2} 1^{2}=1=(-1)^{2} 1$. Now, for the inductive hypothesis, assume that the formula holds for a positive integer $k \geq 1$. We will prove the result
for $k+1$. Indeed, by splitting the sum, using the inductive hypothesis and Gauss' Formula, we have

$$
\begin{aligned}
\sum_{i=1}^{k+1}(-1)^{i+1} i^{2} & =\sum_{i=1}^{k}(-1)^{i+1} i^{2}+(-1)^{k+2}(k+1)^{2} \\
& =(-1)^{k+1} \sum_{i=1}^{k} i+(-1)^{k+2}(k+1)^{2} \\
& =(-1)^{k+1} \frac{k(k+1)}{2}+(-1)^{k+2}(k+1)^{2} \\
& =(-1)^{k+2} \frac{2(k+1)^{2}-k(k+1)}{2} \\
& =(-1)^{k+2} \frac{k^{2}+3 k+2}{2} \\
& =(-1)^{k+2} \frac{(k+1)(k+2)}{2} \\
& =(-1)^{k+2} \sum_{i=1}^{k+1} i .
\end{aligned}
$$

Hence the formula holds for $k+1$. By mathematical induction, we conclude that the formula holds for any $m \geq 1$.

Exercise 5. For each of the following relations, determine whether the relation is reflexive, symmetric, antisymmetric, or transitive:
(1) $R \subseteq \mathbb{N} \times \mathbb{N}$ where $(a, b) \in R$ if a divides b,
(2) For given a universe \mathcal{U} and a fixed subset C of \mathcal{U}, define R on $\mathcal{P}(\mathcal{U})$ as follows: For $A, B \subseteq \mathcal{U}$ we have $(A, B) \in R$ if $A \cap C=B \cap C$.
(3) On the set A of all lines in R^{2}, define the relation R for two lines $l_{!}$and l_{2} by $\left(l_{1}, l_{2}\right) \in R$ if l_{1} is perpendicular to l_{2}.
(4) R is the relation on \mathbb{Z} where $(x, y) \in R$ if $x+y$ is odd.

Solution. (1) The relation is reflexive since $a \mid a$ for any $a \in \mathbb{N}$. The relation is not symmetric, since $1 \mid 2$ but $2 \not \backslash 1$. It is antisymmetric: if $a \mid b$ and $b \mid a$, we have that there exist $x, y \in \mathbb{N}$ such that $a x=b$ and $b y=a$. Both equalities imply that $b=a x=b y x$. This implies that $x y=1 \Leftrightarrow x=y=1$. Hence $a=b$. Finally, the relation is transitive: if $a \mid b$ and $b \mid c$, then there exist $x, y \in \mathbb{N}$ such that $a x=b$ and $b y=c$. Both equalities imply that $c=b y=(a x) y=a(x y)$. Since $x y \in \mathbb{N}$, the equation $c=a(x y)$ implies that $a \mid c$. Hence R is transitive.
(2) The relation is reflexive: If A is a subset of \mathcal{U}, we clearly have that $A \cap C=A \cap C$. The relation is symmetric: if $(A, B) \in R$, then $A \cap C=B \cap C$. This implies that $B \cap C=A \cap C$ and then $(B, A) \in R$. The relation is also transitive: if $(A, B),(B, D) \in R$, then $A \cap C=B \cap C$ and $\cap C=D \cap C$. Both equalities imply that $A \cap C=D \cap C$ and then $(A, D) \in R$. The relation is not anti-symmetric: if $\mathcal{U}=\{1,2,3\}, C=\{3\}, A=\{1\}$, and $B=\{2\}$, we have that $A \cap C=\emptyset=B \cap C$ but $A \neq B$.
(3) The relation is not reflexive since a line is not perpendicular to itself. It is clearly symmetric. It is not transitive: the lines $x=0$ and $y=0$ are perpendicular, $y=0$ and $x=1$ are perpendicular, but $x=0$ and $x=1$ are not perpendicular. It is not anti-symmetric: $x=0$ and $y=0$ are perpendicular but the lines are not the same.
(4) It is not reflexive, since $1 \in \mathbb{Z}$ and $(1,1) \notin R$ since $1+1=2$ is not odd. It is clearly symmetric: if $(x, y) \in R$ then $x+y$ is odd. This implies that $y+x$ is odd and hence $(y, x) \in R$. It is not transitive: we have that $(1,2),(2,3) \in R$ since $1+2=3$ and $2+3=5$ but $1+3=4$ is not odd. Finally, it is not anti-symmetric since $(1,2),(2,1) \in R$ since $1+2=3$ but $1 \neq 2$.

Exercise 6. Define $R \subseteq \mathbb{N}^{2} \times \mathbb{N}^{2}$ the relation $((a, b),(c, d)) \in R \Leftrightarrow a d=b c$. Show that R is an equivalence relation.

Solution. We will show that R is an equivalence relation.

- Reflexivity. Let $(a, b) \in \mathbb{N}^{2}$. We clearly have that $a b=b a$, so $((a, b),(a, b)) \in R$.
- Symmetry. Observe that $((a, b),(c, d)) \in R \Leftrightarrow a d=b c \Leftrightarrow c b=d a \Leftrightarrow((c, d),(a, b)) \in R$.
- Transitivity. Assume that $((a, b),(c, d)),((c, d),(e, f)) \in R$. Then we have $a d=b c$ and $c f=d e$. Multiplying the last equation by a, we have $c f a=d e a=a d e$. Since $a d=b c$, we have $c f a=(a d) e=$ $(b c) e$. Dividing by c, we get $a f=b e$. Hence $((a, b),(e, f)) \in R$.
We conclude that R is an equivalence relation.
Exercise 7. Let $A=\{1,2,3,4,5\} \times\{1,2,3,4,5\}$. Define the relation R on A by $((x, y),(u, v)) \in R$ if $x+y=u+v$. Show that R is an equivalence relation on A and determine the equivalence classes $[(1,3)]$, $[(2,4)]$ and $[(1,1)]$.

Solution. We will show that R is an equivalence relation.

- Reflexivity: If $(a, b) \in A$, then clearly have that $a+b=a+b$ and hence $((a, b),(a, b)) \in R$.
- Symmetry: If $((a, b),(u, v)) \in R$ then $a+b=u+v$. This implies that $u+v=a+b$ and hence $((u, v),(a, b)) \in R$.
- Transitivity: If $((a, b),(u, v)),((u, v),(x, y)) \in R$ then we have that $a+b=u+v$ and $u+v=x+y$. Both equations imply that $a+b=x+y$ and hence $((a, b),(x, y)) \in R$.
Hence R is an equivalence relation. Now, recall that

$$
[(a, b)]=\{(u, v) \in A:((a, b),(u, v)) \in R\} .
$$

For the equivalence class of $(1,3)$, we have to find all the pairs $(u, v) \in A$ such that $u+v=1+3=4$. It is easy to see that

$$
[(1,3)]=\{(1,3),(3,1),(2,2)\}
$$

In a similar way, we have

$$
\begin{aligned}
{[(2,4)] } & =\{(1,5),(5,1),(2,4),(4,2),(3,3)\} \\
{[(1,1)] } & =\{(1,1)\}
\end{aligned}
$$

Exercise 8. If $A=\{1,2,3,4,5,6,7\}$, define the relation R on A by $(x, y) \in R$ if $x-y$ is multiple of 3. Show that R is an equivalence relation on A and determine the equivalence classes and partition of A induced by R.

Solution. We will show that R is an equivalence relation.

- Reflexivity: If $x \in A$, then clearly have that 3 divides to $0=x-x$ and hence $(x, x) \in R$.
- Symmetry: If $(x, y) \in R$ then 3 divides $x-y$. Since $y-x=-(x-y)$, then we also have that 3 divides $y-x$. Hence $(y, x) \in R$.
- Transitivity: If $(x, y),(y, z) \in R$, we have that 3 divides to $x-y$ and $y-z$. This implies that 3 divides the sum of the numbers $x-y$ and $y-z$ that is equal to $x-y+y-z=x-z$. Hence 3 divides to $x-z$, i.e. $(x, z) \in R$.
Hence R is an equivalence relation. We find now the equivalence classes:
- For the equivalence class of 1 , we have to find all the elements $x \in A$ such that 3 divides $1-x$. A quick inspection produces that x can be $1,4,7$.
- For the equivalence class of 2 , we have to find all the elements $x \in A$ such that 3 divides $2-x$. A quick inspection produces that x can be 2,5 .
- For the equivalence class of 3 , we have to find all the elements $x \in A$ such that 3 divides $3-x$. A quick inspection produces that x can be 3,6 .
Hence the equivalence classes of R are

$$
[1]=\{1,4,7\},[2]=\{2,5\},[3]=\{3,6\}
$$

and the partition of A induced by R is $\{\{1,4,7\},\{2,5\},\{3,6\}\}$.

