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Exercise 1. Show that for all integers m > 0

m

_ m(3m+5)
iG+2)  4m+1)(m+2)

j=1

Solution. We will prove the statement by mathematical induction on m. The base case m = 1 is straight-

forward since 1(114_2) = % = % For the inductive hypothesis, assume that the statement is true for
some positive integer m = k > 1, i.e., we suppose that Zj 1 ](jiz) = 4(:&]‘5&?2). For the inductive step, we

will prove that the statement is also true for m = k+ 1. Indeed, by splitting the sum and using the inductive

hypothesis, we have that

k+1

+

1 _ z’“: L, 1

iG+y =i+ Rk +3)

k(3k +5) N 1

4k+1)(k+2)  (k+1)(k+3)

k(3k +5)(k+1)(k+3)+4(k+1)(k+2)
4k +1)%(k+2)(k+3)

k(3k +5)(k+3)+4(k +2)

4(k+1)(k+2)(k+3)

(k+1)k(3k +5) +2k(3k+5) +4(k+1)+4
4k +1)(k+2)(k+3)
(k+1)(k(3k 4+ 5) + 4) + 6k* + 10k + 4
4k +1)(k+2)(k+3)
(k+1)(E(Bk+5)+4)+ (E+1)(6k+4)
4(k+1)(k+2)(k+3)

3k + 11k + 8
4(k +2)(k + 3)
(k+1)(3k +8)
4(k +2)(k + 3)
(k+1)(3(k+1)+5)
A+ +D)((E+1)+2)°

.
I
=

Hence the formula is true for k£ + 1. By the mathematical induction principle, we conclude that the formula

es true for any m € N. |

Exercise 2. Show that for all non-negative integers m, we have that 3 divides the number a,, = 2™ +1.
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Solution. By mathematical induction on m. For the base case m = 1, we have that a; = 22t! +1 =9 and

clearly 3|a;. For the inductive hypothesis, assume that 3 divides to ap = 22+ + 1, for some positive integer
k > 1. We will prove that 3|ag+1. Indeed, notice that

aryr =22 41 =22 2% 41 = (34 1)2% T 4 1=3. 2% 4 92041 L1 = 3. 9% 4 gy

By induction hypothesis, we have that 3|ay. Since we clearly have that 3|3 - 22**! we can conclude that

3|(3- 22+ 4 g;) and hence 3|ag1, as we wanted. By mathematical induction, we conclude that 3 divides

G, for any m € N.

O

Exercise 3. Let {L,}, n > 0 be the sequence of Lucas numbers, which are defined recursively, i.e., for
n>1, L,=L, 1+ L2, Lo =2, Ly =1. Show that for positive integers m

> iLi =mLmys — Lpys + 4.

i=1

Solution. By induction on m. For the base case m =1, wehave 1- /1 =1land 1-43—¥,+4=4—-T4+4=1.

Now, assume that the formula holds for a positive integer £k > 1. We will prove the result for £ + 1. By

splitting the sum and using the inductive hypothesis, we have

k+1 k

it = Y ili+ (k+
i=1

i=1

1)1

= klpro —liys +4+ (K + 1)l
= k(lgyo + liy1) + lis1 — Uy +4

k-1

Il
~—~ o~ ~~ ~~
7
_|_
—_
~— Y~ ~— ~— ~—

where we used the definition of Lucas’ numbers.
induction, we have that Y "

%

Exercise 4. Show that for all integers m > 0

Crss 4 Lrpt + 4+ 2055 — 200
lpyz+liy1 — oz — lpiz+ 4

lryz 4+ lryr — g1 — lpg2 — by +4
Uryg — Lo — L3+ 4

lryz — lpya +4,

Hence the formula holds for & + 1.

_1 iy =mly g0 — lyy3 + 4 for any m > 1.

= (—=1)m*? Em:z
=1

By mathematical

O

Solution. By induction on m. For the base case m = 1, observe that (—1)?12 = 1 = (—1)?1. Now, for the

inductive hypothesis, assume that the formula holds for a positive integer k£ > 1. We will prove the result
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for k + 1. Indeed, by splitting the sum, using the inductive hypothesis and Gauss’ Formula, we have

k41 k
Z(—l)i+1i2 — Z(—l)i+1i2+(—1)k+2(k+1)2

k
_ (_1)k+1 Zi+ (—1)k+2(/€—|— 1)2
i=1

— (—l)k—"—l@ + (—1)k+2(k+ 1)2
2(k +1)% —k(k+1)
(_1)k+2 5
pro kB + 3k +2
2
po (B +1)(k+2)
2

- 1
- (-1

k+1

_ (_1)k+2 ZZ
=1

Hence the formula holds for £ 4+ 1. By mathematical induction, we conclude that the formula holds for any

m > 1.

O

Exercise 5. For each of the following relations, determine whether the relation is reflexive, symmetric,

antisymmetric, or transitive:

(1)
(2)

(3)
(4)

R C N x N where (a,b) € R if a divides b,

For given a universe U and a fized subset C' of U, define R on P(U) as follows: For A,B C U we
have (A,B) e R if AnC =BnC.

On the set A of all lines in R%, define the relation R for two lines Iy and ly by (I1,l3) € R if Iy is
perpendicular to lo.

R is the relation on Z where (x,y) € R if x +y is odd.

Solution. (1) The relation is reflexive since a|a for any a € N. The relation is not symmetric, since 1|2

but 2 f1. It is antisymmetric: if a|b and bla, we have that there exist ,y € N such that az = b and
by = a. Both equalities imply that b = ax = byx. This implies that zy =1 < x = y = 1. Hence
a = b. Finally, the relation is transitive: if a|b and blc, then there exist 2,y € N such that ax = b and
by = c. Both equalities imply that ¢ = by = (az)y = a(zy). Since zy € N, the equation ¢ = a(xy)
implies that a|c. Hence R is transitive.
The relation is reflexive: If A is a subset of U, we clearly have that ANC = AN C. The relation is
symmetric: if (A, B) € R, then ANC = BNC. This implies that BNC = ANC and then (B, A) € R.
The relation is also transitive: if (A, B),(B,D) € R, then ANC = BNC and NC = DN C. Both
equalities imply that AN C = D N C and then (A, D) € R. The relation is not anti-symmetric: if
U=11,2,3},C ={3},A= {1}, and B = {2}, we have that ANC =0 =BNC but A+# B.
The relation is not reflexive since a line is not perpendicular to itself. It is clearly symmetric. It is
not transitive: the lines x = 0 and y = 0 are perpendicular, y = 0 and z = 1 are perpendicular, but
z =0 and z = 1 are not perpendicular. It is not anti-symmetric: x = 0 and y = 0 are perpendicular
but the lines are not the same.
It is not reflexive, since 1 € Z and (1,1) € R since 1 + 1 = 2 is not odd. It is clearly symmetric: if
(x,y) € R then x4y is odd. This implies that y+ x is odd and hence (y,x) € R. It is not transitive:
we have that (1,2),(2,3) € Rsince 1 +2 =3 and 2+ 3 =5 but 1+ 3 = 4 is not odd. Finally, it is
not anti-symmetric since (1,2),(2,1) € R since 1 + 2 = 3 but 1 # 2.

O
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Exercise 6. Define R C N? x N2 the relation ((a,b), (c,d)) € R < ad = be. Show that R is an equivalence
relation.

Solution. We will show that R is an equivalence relation.
o Reflexivity. Let (a,b) € N2. We clearly have that ab = ba, so ((a,b), (a,b)) € R.
e Symmetry. Observe that ((a,b), (¢,d)) € R < ad = bc < ¢b = da < ((¢,d), (a,b)) € R.
e Transitivity. Assume that ((a,b), (¢,d)), ((¢,d), (e, f)) € R. Then we have ad = bc and cf = de.
Multiplying the last equation by a, we have ¢fa = dea = ade. Since ad = be, we have ¢fa = (ad)e =
(bc)e. Dividing by ¢, we get af = be. Hence ((a,b), (e, f)) € R.

We conclude that R is an equivalence relation. O

Exercise 7. Let A = {1,2,3,4,5} x {1,2,3,4,5}. Define the relation R on A by ((z,y), (u,v)) € R if
x +y =u+v. Show that R is an equivalence relation on A and determine the equivalence classes [(1,3)],
[(2,4)] and [(1,1)].

Solution. We will show that R is an equivalence relation.
e Reflexivity: If (a,b) € A, then clearly have that a + b = a + b and hence ((a,b), (a,b)) € R.
e Symmetry: If ((a,b), (u,v)) € R then a + b = w + v. This implies that v + v = a + b and hence
((u,v), (a,b)) € R.
o Transitivity: If ((a,b), (u,v)), ((u,v), (x,y)) € R then we have that a+b=u+vand u+v=2z+y.
Both equations imply that a + b =z + y and hence ((a,b), (z,y)) € R.

Hence R is an equivalence relation. Now, recall that
[(a,0)] = {(u,v) € A : ((a,b), (u,v)) € R}.
For the equivalence class of (1,3), we have to find all the pairs (u,v) € A such that u+v=14+3=4. It is

easy to see that
[(1’ 3)] = {(1’ 3)7 (37 1)’ (27 2)}

In a similar way, we have

[(274)] = {<1’5)’(571)’(254)7(4’2)a(373)}7
(L] = {@ D}
([l

Exercise 8. If A ={1,2,3,4,5,6,7}, define the relation R on A by (z,y) € R if x —y is multiple of 8. Show
that R is an equivalence relation on A and determine the equivalence classes and partition of A induced by
R.

Solution. We will show that R is an equivalence relation.

o Reflexivity: If z € A, then clearly have that 3 divides to 0 = z — = and hence (z,z) € R.
e Symmetry: If (z,y) € R then 3 divides z — y. Since y — z = —(x — y), then we also have that 3
divides y — . Hence (y,x) € R.
e Transitivity: If (x,y), (y,2) € R, we have that 3 divides to x —y and y — z. This implies that 3
divides the sum of the numbers z — y and y — z that is equal to x —y +y — 2 = x — z. Hence 3
divides to = — z, i.e. (z,2) € R.
Hence R is an equivalence relation. We find now the equivalence classes:

e For the equivalence class of 1, we have to find all the elements x € A such that 3 divides 1 —xz. A
quick inspection produces that x can be 1,4, 7.
e For the equivalence class of 2, we have to find all the elements x € A such that 3 divides 2 —xz. A

quick inspection produces that = can be 2, 5.
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e For the equivalence class of 3, we have to find all the elements z € A such that 3 divides 3 — . A

quick inspection produces that x can be 3, 6.

Hence the equivalence classes of R are

(1] ={1,4,7}, [2] = {2,5}, [3] = {3,6}
and the partition of A induced by R is {{1,4,7},{2,5},{3,6}}. O



