MA0301 ELEMENTARY DISCRETE MATHEMATICS NTNU, SPRING 2021

Set 5

Deadline: Wednesday 3 March, 2021, 23:59.

Exercise 1. Show that for all integers m > 0

$$\sum_{j=1}^{m} \frac{1}{j(j+2)} = \frac{m(3m+5)}{4(m+1)(m+2)}.$$

Solution. We will prove the statement by mathematical induction on m. The base case m = 1 is straightforward since $\frac{1}{1(1+2)} = \frac{1}{3} = \frac{1(3+5)}{4(1+1)(1+2)}$. For the inductive hypothesis, assume that the statement is true for some positive integer $m = k \ge 1$, i.e., we suppose that $\sum_{j=1}^{k} \frac{1}{j(j+2)} = \frac{k(3k+5)}{4(k+1)(k+2)}$. For the inductive step, we will prove that the statement is also true for m = k + 1. Indeed, by splitting the sum and using the inductive hypothesis, we have that

$$\begin{split} \sum_{j=1}^{k+1} \frac{1}{j(j+2)} &= \sum_{j=1}^{k} \frac{1}{j(j+2)} + \frac{1}{(k+!)(k+3)} \\ &= \frac{k(3k+5)}{4(k+1)(k+2)} + \frac{1}{(k+1)(k+3)} \\ &= \frac{k(3k+5)(k+1)(k+3) + 4(k+1)(k+2)}{4(k+1)^2(k+2)(k+3)} \\ &= \frac{k(3k+5)(k+3) + 4(k+2)}{4(k+1)(k+2)(k+3)} \\ &= \frac{(k+1)k(3k+5) + 2k(3k+5) + 4(k+1) + 4}{4(k+1)(k+2)(k+3)} \\ &= \frac{(k+1)(k(3k+5) + 4) + 6k^2 + 10k + 4}{4(k+1)(k+2)(k+3)} \\ &= \frac{(k+1)(k(3k+5) + 4) + (k+1)(6k+4)}{4(k+1)(k+2)(k+3)} \\ &= \frac{3k^2 + 11k + 8}{4(k+2)(k+3)} \\ &= \frac{(k+1)(3(k+1) + 5)}{4((k+1) + 1)((k+1) + 2)}. \end{split}$$

Hence the formula is true for k + 1. By the mathematical induction principle, we conclude that the formula es true for any $m \in \mathbb{N}$.

Exercise 2. Show that for all non-negative integers m, we have that 3 divides the number $a_m = 2^{2m+1} + 1$.

Date: Deadline: Wednesday 3 March, 2021, 23:59.

Solution. By mathematical induction on m. For the base case m = 1, we have that $a_1 = 2^{2+1} + 1 = 9$ and clearly $3|a_1$. For the inductive hypothesis, assume that 3 divides to $a_k = 2^{2k+1} + 1$, for some positive integer $k \ge 1$. We will prove that $3|a_{k+1}$. Indeed, notice that

$$a_{k+1} = 2^{2k+3} + 1 = 2^2 \cdot 2^{2k+1} + 1 = (3+1)2^{2k+1} + 1 = 3 \cdot 2^{2k+1} + 2^{2k+1} + 1 = 3 \cdot 2^{2k+1} + a_k$$

By induction hypothesis, we have that $3|a_k$. Since we clearly have that $3|3 \cdot 2^{2k+1}$, we can conclude that $3|(3 \cdot 2^{2k+1} + a_k)$ and hence $3|a_{k+1}$, as we wanted. By mathematical induction, we conclude that 3 divides a_m , for any $m \in \mathbb{N}$.

Exercise 3. Let $\{L_n\}$, $n \ge 0$ be the sequence of Lucas numbers, which are defined recursively, i.e., for n > 1, $L_n = L_{n-1} + L_{n-2}$, $L_0 = 2$, $L_1 = 1$. Show that for positive integers m

$$\sum_{i=1}^{m} iL_i = mL_{m+2} - L_{m+3} + 4.$$

Solution. By induction on m. For the base case m = 1, we have $1 \cdot \ell_1 = 1$ and $1 \cdot \ell_3 - \ell_4 + 4 = 4 - 7 + 4 = 1$. Now, assume that the formula holds for a positive integer $k \ge 1$. We will prove the result for k + 1. By splitting the sum and using the inductive hypothesis, we have

$$\begin{split} \sum_{i=1}^{k+1} i\ell_i &= \sum_{i=1}^k i\ell_i + (k+1)\ell_{k+1} \\ &= k\ell_{k+2} - \ell_{k+3} + 4 + (k+1)\ell_{k+1} \\ &= k(\ell_{k+2} + \ell_{k+1}) + \ell_{k+1} - \ell_{k+3} + 4 \\ &= (k-1)\ell_{k+3} + \ell_{k+1} - \ell_{k+3} - 2\ell_{k+3} \\ &= (k+1)\ell_{k+3} + \ell_{k+1} - \ell_{k+3} - \ell_{k+3} + 4 \\ &= (k+1)\ell_{k+3} - \ell_{k+2} - \ell_{k+3} + 4 \\ &= (k+1)\ell_{k+3} - \ell_{k+2} - \ell_{k+3} + 4 \\ &= (k+1)\ell_{k+3} - \ell_{k+4} + 4, \end{split}$$

where we used the definition of Lucas' numbers. Hence the formula holds for k + 1. By mathematical induction, we have that $\sum_{i=1}^{m} i\ell_i = m\ell_{m+2} - \ell_{m+3} + 4$ for any $m \ge 1$.

Exercise 4. Show that for all integers m > 0

$$\sum_{i=1}^{m} (-1)^{i+1} i^2 = (-1)^{m+1} \sum_{i=1}^{m} i.$$

Solution. By induction on m. For the base case m = 1, observe that $(-1)^2 1^2 = 1 = (-1)^2 1$. Now, for the inductive hypothesis, assume that the formula holds for a positive integer $k \ge 1$. We will prove the result

MA0301

for k + 1. Indeed, by splitting the sum, using the inductive hypothesis and Gauss' Formula, we have

$$\begin{split} \sum_{i=1}^{k+1} (-1)^{i+1} i^2 &= \sum_{i=1}^k (-1)^{i+1} i^2 + (-1)^{k+2} (k+1)^2 \\ &= (-1)^{k+1} \sum_{i=1}^k i + (-1)^{k+2} (k+1)^2 \\ &= (-1)^{k+1} \frac{k(k+1)}{2} + (-1)^{k+2} (k+1)^2 \\ &= (-1)^{k+2} \frac{2(k+1)^2 - k(k+1)}{2} \\ &= (-1)^{k+2} \frac{k^2 + 3k + 2}{2} \\ &= (-1)^{k+2} \frac{(k+1)(k+2)}{2} \\ &= (-1)^{k+2} \sum_{i=1}^{k+1} i. \end{split}$$

Hence the formula holds for k + 1. By mathematical induction, we conclude that the formula holds for any $m \ge 1$.

Exercise 5. For each of the following relations, determine whether the relation is reflexive, symmetric, antisymmetric, or transitive:

- (1) $R \subseteq \mathbb{N} \times \mathbb{N}$ where $(a, b) \in R$ if a divides b,
- (2) For given a universe \mathcal{U} and a fixed subset C of \mathcal{U} , define R on $\mathcal{P}(\mathcal{U})$ as follows: For $A, B \subseteq \mathcal{U}$ we have $(A, B) \in R$ if $A \cap C = B \cap C$.
- (3) On the set A of all lines in \mathbb{R}^2 , define the relation R for two lines l_1 and l_2 by $(l_1, l_2) \in \mathbb{R}$ if l_1 is perpendicular to l_2 .
- (4) R is the relation on \mathbb{Z} where $(x, y) \in R$ if x + y is odd.
- Solution. (1) The relation is reflexive since a|a for any $a \in \mathbb{N}$. The relation is not symmetric, since 1|2 but 2 /1. It is antisymmetric: if a|b and b|a, we have that there exist $x, y \in \mathbb{N}$ such that ax = b and by = a. Both equalities imply that b = ax = byx. This implies that $xy = 1 \Leftrightarrow x = y = 1$. Hence a = b. Finally, the relation is transitive: if a|b and b|c, then there exist $x, y \in \mathbb{N}$ such that ax = b and by = c. Both equalities imply that c = by = (ax)y = a(xy). Since $xy \in \mathbb{N}$, the equation c = a(xy) implies that a|c. Hence R is transitive.
 - (2) The relation is reflexive: If A is a subset of \mathcal{U} , we clearly have that $A \cap C = A \cap C$. The relation is symmetric: if $(A, B) \in R$, then $A \cap C = B \cap C$. This implies that $B \cap C = A \cap C$ and then $(B, A) \in R$. The relation is also transitive: if $(A, B), (B, D) \in R$, then $A \cap C = B \cap C$ and $\cap C = D \cap C$. Both equalities imply that $A \cap C = D \cap C$ and then $(A, D) \in R$. The relation is not anti-symmetric: if $\mathcal{U} = \{1, 2, 3\}, C = \{3\}, A = \{1\}$, and $B = \{2\}$, we have that $A \cap C = \emptyset = B \cap C$ but $A \neq B$.
 - (3) The relation is not reflexive since a line is not perpendicular to itself. It is clearly symmetric. It is not transitive: the lines x = 0 and y = 0 are perpendicular, y = 0 and x = 1 are perpendicular, but x = 0 and x = 1 are not perpendicular. It is not anti-symmetric: x = 0 and y = 0 are perpendicular but the lines are not the same.
 - (4) It is not reflexive, since $1 \in \mathbb{Z}$ and $(1,1) \notin R$ since 1+1=2 is not odd. It is clearly symmetric: if $(x,y) \in R$ then x+y is odd. This implies that y+x is odd and hence $(y,x) \in R$. It is not transitive: we have that $(1,2), (2,3) \in R$ since 1+2=3 and 2+3=5 but 1+3=4 is not odd. Finally, it is not anti-symmetric since $(1,2), (2,1) \in R$ since 1+2=3 but $1 \neq 2$.

Exercise 6. Define $R \subseteq \mathbb{N}^2 \times \mathbb{N}^2$ the relation $((a, b), (c, d)) \in R \Leftrightarrow ad = bc$. Show that R is an equivalence relation.

Solution. We will show that R is an equivalence relation.

- Reflexivity. Let $(a, b) \in \mathbb{N}^2$. We clearly have that ab = ba, so $((a, b), (a, b)) \in R$.
- Symmetry. Observe that $((a,b), (c,d)) \in R \Leftrightarrow ad = bc \Leftrightarrow cb = da \Leftrightarrow ((c,d), (a,b)) \in R$.
- Transitivity. Assume that ((a, b), (c, d)), ((c, d), (e, f)) ∈ R. Then we have ad = bc and cf = de. Multiplying the last equation by a, we have cfa = dea = ade. Since ad = bc, we have cfa = (ad)e = (bc)e. Dividing by c, we get af = be. Hence ((a, b), (e, f)) ∈ R.

We conclude that R is an equivalence relation.

Exercise 7. Let $A = \{1, 2, 3, 4, 5\} \times \{1, 2, 3, 4, 5\}$. Define the relation R on A by $((x, y), (u, v)) \in R$ if x + y = u + v. Show that R is an equivalence relation on A and determine the equivalence classes [(1, 3)], [(2, 4)] and [(1, 1)].

Solution. We will show that R is an equivalence relation.

- Reflexivity: If $(a, b) \in A$, then clearly have that a + b = a + b and hence $((a, b), (a, b)) \in R$.
- Symmetry: If $((a,b), (u,v)) \in R$ then a + b = u + v. This implies that u + v = a + b and hence $((u,v), (a,b)) \in R$.
- Transitivity: If $((a, b), (u, v)), ((u, v), (x, y)) \in R$ then we have that a + b = u + v and u + v = x + y. Both equations imply that a + b = x + y and hence $((a, b), (x, y)) \in R$.

Hence R is an equivalence relation. Now, recall that

$$[(a,b)] = \{(u,v) \in A : ((a,b),(u,v)) \in R\}.$$

For the equivalence class of (1,3), we have to find all the pairs $(u, v) \in A$ such that u + v = 1 + 3 = 4. It is easy to see that

$$[(1,3)] = \{(1,3), (3,1), (2,2)\}.$$

In a similar way, we have

R.

$$[(2,4)] = \{(1,5), (5,1), (2,4), (4,2), (3,3)\},$$

$$[(1,1)] = \{(1,1)\}.$$

Exercise 8. If $A = \{1, 2, 3, 4, 5, 6, 7\}$, define the relation R on A by $(x, y) \in R$ if x - y is multiple of 3. Show that R is an equivalence relation on A and determine the equivalence classes and partition of A induced by

Solution. We will show that R is an equivalence relation.

- Reflexivity: If $x \in A$, then clearly have that 3 divides to 0 = x x and hence $(x, x) \in R$.
- Symmetry: If $(x, y) \in R$ then 3 divides x y. Since y x = -(x y), then we also have that 3 divides y x. Hence $(y, x) \in R$.
- Transitivity: If $(x, y), (y, z) \in R$, we have that 3 divides to x y and y z. This implies that 3 divides the sum of the numbers x y and y z that is equal to x y + y z = x z. Hence 3 divides to x z, i.e. $(x, z) \in R$.

Hence R is an equivalence relation. We find now the equivalence classes:

- For the equivalence class of 1, we have to find all the elements $x \in A$ such that 3 divides 1 x. A quick inspection produces that x can be 1, 4, 7.
- For the equivalence class of 2, we have to find all the elements $x \in A$ such that 3 divides 2 x. A quick inspection produces that x can be 2, 5.

MA0301

• For the equivalence class of 3, we have to find all the elements $x \in A$ such that 3 divides 3 - x. A quick inspection produces that x can be 3, 6.

Hence the equivalence classes of ${\cal R}$ are

$$[1] = \{1, 4, 7\}, \ [2] = \{2, 5\}, \ [3] = \{3, 6\}$$

and the partition of A induced by R is $\{\{1, 4, 7\}, \{2, 5\}, \{3, 6\}\}$.

5