MA0301

ELEMENTARY DISCRETE MATHEMATICS
 NTNU, SPRING 2020

SET 4
Exercise 1. Let X and Y be two sets. Recall the definition of power set of a set. Show that

$$
\mathcal{P}(X \cap Y)=\mathcal{P}(X) \cap \mathcal{P}(Y)
$$

Exercise 2. a) Let P and Q be two open statements with respect to the universe U. Recall the definition of truth set for an open statement. The truth sets for P and Q are denoted as T_{P} respectively T_{Q}. Show the following: $T_{P} \cap T_{Q}=T_{P \wedge Q}$.
b) The falsity set of an open statement P is denoted as F_{P}. It contains by definition all values in the universe U such that $P \equiv F$. Let P and Q be two open statements with respect to the universe U. The falsity sets for P and Q are denoted as F_{P} respectively F_{Q}. Show that: $F_{P} \cup F_{Q}=F_{P \wedge Q}$.

Exercise 3. Let the universe be the integers, $U=\mathbb{Z}$. Define $P(x): x$ is even, with respect to the universe U. a) Paraphrase as a theorem the following open statement $P(x y) \Rightarrow(P(x) \vee P(y))$. b) Prove the theorem by checking the three possible cases.

Exercise 4. Let B be a Boolean algebra and $x, y \in B$. Use Boolean algebra to show that: $x+\bar{x} y=$ $x+y$.

Exercise 5. Let B be a Boolean algebra and $x, y, z \in B$. Use Boolean algebra to show that: $(x+y)(x+z)=x+y z$

Exercise 6. Let B be a Boolean algebra and $x, y, z \in B$. Use Boolean algebra to simplify the expression: $x y+x(y+z)+y(y+z)$

Exercise 7. Let B be a Boolean algebra and $x, y, z, u \in B$. Use Boolean algebra to simplify the expression: $(\overline{\bar{x}} \overline{\bar{y}} \bar{z}) z+(\overline{\bar{x}} \bar{y} \bar{z})+u$

Exercise 8. Let B be a Boolean algebra. Prove for $x, y \in B$ that $x \cdot \bar{y}=0$ if and only if $x \cdot y=x$.
Exercise 9. Let B be a Boolean algebra. For $x, y, z \in B$ find the dual expressions of

> i) $y \cdot x \cdot \bar{z}+x \cdot \bar{y} \cdot z$
> ii) $x \cdot \bar{y}+x \cdot \bar{z}+y \cdot \bar{x}$
> iii) $x \cdot y \cdot(0+x+(z \cdot 1))$

Exercise 10. Let B be a Boolean algebra. Prove for $x, y, z \in B$ that if $x \cdot y=x \cdot z$ and $\bar{x} \cdot y=\bar{x} \cdot z$, then $y=z$.

