MA0301 ELEMENTARY DISCRETE MATHEMATICS NTNU, SPRING 2020 ## Set 3 You can deliver the exercises (before 10:30am on the indicated day) on the 3 floor of the central building, in an area called Matteland. The box number is 0613. If you want feedback on each exercise, write "want comments"/"nsker retting", otherwise your TA will only write "godkjent"/"ikke godkjent". **Exercise 1.** Use the rules of inference to show that the trueness of: $$\begin{split} i) & (r \vee p) \wedge (\neg q \vee \neg p) \Rightarrow (r \vee \neg q) \\ ii) & (z \vee \neg s) \wedge (p \wedge \neg q) \wedge (\neg z \vee r) \wedge (\neg (p \wedge \neg q) \vee s) \Rightarrow r \end{split}$$ ## Solution. 1) | | Step | Reason | |---|------------------------|--| | 1 | $\neg q \lor \neg p$ | Premise | | 2 | $q \Rightarrow \neg p$ | Equivalence of (1) | | 3 | $r \vee p$ | Premise | | 4 | $\neg(\neg p)\vee r$ | Double negation and commutativity in (3) | | 5 | $\neg p \Rightarrow r$ | Equivalence of (4) | | 6 | $q \Rightarrow r$ | Law of Syllogism from (2) and (5) | | 7 | $\neg q \vee r$ | Equivalence of (6) | | 8 | $r \vee \neg q$ | Commutativity in (8) | 2) | | Step | Reason | |----|----------------------------------|-------------------------------| | 1 | $p \wedge \neg q$ | Premise | | 2 | $\neg (p \land \neg q) \lor s$ | | | 3 | $(p \land \neg q) \Rightarrow s$ | Equivalence of (2) | | 4 | s | Modus Ponens from (1) and (3) | | 5 | $z \vee \neg s$ | Premise | | 6 | $s \Rightarrow z$ | Equivalence of (5) | | 7 | z | Modus Ponens from (4) and (6) | | 8 | $\neg z \lor r$ | Premise | | 9 | $z \Rightarrow r$ | Equivalence of (8) | | 10 | r | Modus Ponens from (7) and (9) | Date: 4 February, 2020. **Exercise 2.** Express the following statements in English. Then determine which of them are true in the natural numbers, $\mathbb{N} := \{0, 1, 2, 3, 4, 5, \ldots\}$ and which are true in real numbers \mathbb{R} . a) $$\forall x \ \forall y \ ((x > y) \Rightarrow \exists z \ ((x > z) \land (z > y)))$$ b) $$\forall x \ (x = 0 \lor \neg(x + x = x))$$ Solution. a) If x and y are such that x is greater than y, then there exists z such that x is greater than z and z is greater than y. This is not true in the natural numbers. For instance, take x = 1 and y = 0. Then x > y but there is no natural number z between 0 and 1. The statement is true in the real numbers because of the density of real numbers (there is a real number between two real numbers). 2) For any number x, we have that x is equal to zero or the double of x is different than x. This is true in both \mathbb{N} and \mathbb{R} . The following argument works in both cases. If x is not zero and 2x = x, we can divide by x (since $x \neq 0$) and then we would have 2 = 1, which is a contradiction. Hence, we cannot have that 2x = x. **Exercise 3.** What is the power set of $A := \{\{a,b\}, \{c\}, \{d,e,f\}\}\}$? Solution. The power set of A is defined as the collection of subsets of A. We have then that the power set of A is the following: $$\mathcal{P}(A) = \{\emptyset, \{\{a,b\}\}, \{\{c\}\}, \{\{d,e,f\}\}, \{\{a,b\}, \{c\}\}, \{\{c\}, \{d,e,f\}\}, \{\{a,b\}, \{d,e,f\}\}\}, A\}$$ **Exercise 4.** Let X and Y be two sets. Show that $X - Y = X \cap \overline{Y}$. Solution. Assume that X and Y are sets in the universe \mathcal{U} . Then $$x \in X - Y \Leftrightarrow x \in X \land x \notin Y$$ $$\Leftrightarrow x \in X \land x \in \mathcal{U} \land x \notin Y$$ $$\Leftrightarrow x \in X \land x \in \overline{Y}$$ $$\Leftrightarrow x \in X \cap \overline{Y}.$$ (identity law $A \cap \mathcal{U} = A$) Hence $$X - Y = X \cap \overline{Y}$$. **Exercise 5.** For two sets X and Y, show that A := X - Y and $B := X \cap Y$ are disjoint sets and that $X = A \cup B$. Solution. Using Exercise 4, we have that $A = X - Y = X \cap \overline{Y}$. Hence $$A\cap B=(X-Y)\cap (X\cap Y)=(X\cap \overline{Y})\cap (X\cap Y)=X\cap X\cap (Y\cap \overline{Y})=X\cap \emptyset=\emptyset,$$ by using the Commutativity Law, that $Y \cap \overline{Y} = \emptyset$ and the Absorption Law. Hence A and B are disjoint sets. In a similar way, we have $$X \cup Y = (X \cap \overline{Y}) \cup (X \cap Y) = X \cup (Y \cap \overline{Y}) = X \cup \emptyset = X,$$ where in the second equality we use the Distributive Law and the Absorption Law in the last equality. \Box **Exercise 6.** Let A, B, C be sets. The symmetric difference was defined by $A \triangle B := (A - B) \cup (B - A)$. Show that a) $A \triangle B = (A \cup B) - (A \cap B)$, b) $A \triangle B = B \triangle A$ and that c) $A \triangle (B \triangle C) = (A \triangle B) \triangle C$. Solution. 1) Using Exercise 4 and Distributive Law, we have that $$A\triangle B = (A - B) \cup (B - A)$$ $$= (A \cap \overline{B}) \cup (B \cap \overline{A})$$ $$= ((A \cap \overline{B}) \cup B) \cap ((A \cap \overline{B}) \cup \overline{A})$$ $$= ((A \cup B) \cap (\overline{B} \cup B)) \cap ((A \cup \overline{A}) \cap (\overline{B} \cup \overline{A}))$$ $$= ((A \cup B) \cap \mathcal{U}) \cap (\mathcal{U} \cap (\overline{B} \cup \overline{A}))$$ $$= (A \cup B) \cap (\overline{A \cap B}) \qquad \text{(Identity Law and DeMorgan's Law)}$$ $$= (A \cup B) - (A \cap B) \qquad \text{(Exercise 4)}.$$ 2) This immediately follows from Commutativity Law of union of sets: $$A\triangle B = (A-B) \cup (B-A) = (B-A) \cup (A-B) = B\triangle A.$$ 3) $$A\triangle(B\triangle C) = (A\cap(\overline{B\triangle C}))\cup((B\triangle C)\cap\overline{A}) \qquad \text{(Definition of }\triangle$$ $$= (A\cap(\overline{(B\cap\overline{C})}\cup(C\cap\overline{B})))\cup(((B\cap\overline{C})\cup(C\cap\overline{B}))\cap\overline{A}) \qquad \text{(Definition of }\triangle$$ $$= (A\cap((\overline{B}\cup C)\cap(\overline{C}\cup B)))\cup(((B\cap\overline{C})\cup(C\cap\overline{B}))\cap\overline{A}) \qquad \text{DeMorgan's Law}$$ $$= (A\cap((\overline{B}\cap\overline{C})\cup(B))\cup(C\cap(\overline{C}\cup B)))\cup(((B\cap\overline{C})\cup(C\cap\overline{B}))\cap\overline{A}) \qquad \text{Distributive Law}$$ $$= (A\cap((\overline{B}\cap\overline{C})\cup(B\cap\overline{B}))\cup(C\cap(C\cap\overline{B})))\cup(((B\cap\overline{C})\cup(C\cap\overline{B}))\cap\overline{A}) \qquad \text{Distributive Law}$$ $$= (A\cap((\overline{B}\cap\overline{C})\cup\emptyset\cup\emptyset\cup(C\cap\overline{B})))\cup(((B\cap\overline{C})\cup(C\cap\overline{B}))\cap\overline{A}) \qquad \text{Disjoint intersect}$$ $$= (A\cap((\overline{B}\cap\overline{C})\cup(C\cap\overline{B})))\cup(((B\cap\overline{C})\cup(C\cap\overline{B}))\cap\overline{A}) \qquad \text{Distributive Law}$$ $$= (A\cap((\overline{B}\cap\overline{C})\cup(C\cap\overline{B})))\cup(((B\cap\overline{C})\cup(C\cap\overline{B}))\cap\overline{A}) \qquad \text{Distributive Law}$$ $$= (A\cap(B\cap\overline{C})\cup(C\cap\overline{B}))\cup((C\cap\overline{B}))\cap\overline{A}) \qquad \text{Distributive Law}$$ $$= (A\cap(B\cap\overline{C})\cup(C\cap\overline{B}))\cup((C\cap\overline{B})\cap\overline{A}) \cup((C\cap\overline{B})\cap\overline{A}) \qquad \text{Distributive Law}$$ Now, by part 2, we have that $(A\triangle B)\triangle C = C\triangle (A\triangle B)$. We can use the previous development but just changing the label of the sets: $$C\triangle(A\triangle B) = (C\cap \overline{A}\cap \overline{B}) \cup (C\cap B\cap A) \cup (A\cap \overline{B}\cap \overline{C}) \cup (B\cap \overline{A}\cap \overline{C}).$$ Finally, because union and intersection of sets is commutative, we conclude that $$A\triangle(B\triangle C) = (A\cap \overline{B}\cap \overline{C}) \cup (A\cap C\cap B) \cup (B\cap \overline{C}\cap \overline{A}) \cup (C\cap \overline{B}\cap \overline{A})$$ $$= (A\cap \overline{B}\cap \overline{C}) \cup (C\cap B\cap A) \cup (B\cap \overline{A}\cap \overline{C}) \cup (C\cap \overline{A}\cap \overline{B}) \quad \text{(rearranging intersections)}$$ $$= (C\cap \overline{A}\cap \overline{B}) \cup (C\cap B\cap A) \cup (A\cap \overline{B}\cap \overline{C}) \cup (B\cap \overline{A}\cap \overline{C}) \quad \text{(rearranging unions)}$$ $$= C\triangle(A\triangle B) = (A\triangle B)\triangle C,$$ that is what we wanted to prove. **Exercise 7.** Let $A := \{1, 2, 3, 4, 5, 6, \{1\}\}$. Determine the set B such that $B = A \cup (A \cap \mathcal{P}(A))$. Solution. One can try to compute $\mathcal{P}(A)$ and the respective intersection and union with A. However, we can proceed in general as follows: note that $A \cap \mathcal{P}(A) \subset A$ and by Absorption law, $B = A \cup (A \cap \mathcal{P}(A)) = A$. **Exercise 8.** For two sets X and Y to show that they are equal, i.e., X = Y, you learned that you must show that $X \subseteq Y$ and $Y \subseteq X$. Show that this is equivalent to showing: if $x \in X$ then $x \in Y$ and if $x \notin X$ then $x \notin Y$. Now, use the latter to show that $$X \times (Y \cup Z) = (X \times Y) \cup (X \times Z).$$ Solution. We know that $X \subseteq Y$ is equivalent to the statement $x \in X \Rightarrow x \in Y$. We also have that $Y \subseteq X$ is equivalent to $x \in Y \Rightarrow x \in X$. In general, we know that for $(p \Rightarrow q) \equiv (\neg q \Rightarrow \neg p)$. So, $(x \in Y \Rightarrow x \in X) \Leftrightarrow (x \notin X \Rightarrow x \notin Y)$. Hence $X \subseteq Y \land Y \subseteq X$ is equivalent to the statement $x \in X \Rightarrow x \in Y$ and $x \notin X \Rightarrow x \notin Y$. Now, assume that $(a, b) \in X \times (Y \cup Z)$. This is equivalent to say that $a \in X$ and $b \in Y \cup Z$. The latter statement implies (it is equivalent, actually) that $b \in Y \vee b \in Z$. Hence $$(a,b) \in X \times (Y \cup Z) \Rightarrow a \in X \land (b \in Y \lor b \in Z) \Rightarrow (a \in X \land b \in Y) \lor (a \in X \land b \in Z)$$ $$\Rightarrow$$ $((a,b) \in X \times Y) \vee ((a,b) \in (X,Z)) \Rightarrow (a,b) \in (X \times Y) \cup (X \times Z).$ We have proven that $(a,b) \in X \times (Y \cup Z)$ implies that $(a,b) \in (X \times Y) \cup (X \times Z)$. Now, assume that $(a,b) \notin X \times (Y \cup Z)$. This implies that $a \notin X$ or $b \notin Y \cup Z$. The second statement implies that $b \notin Y$ and $b \notin Z$. So we have that $$a \notin X \lor (b \notin Y \land b \notin Z) \Rightarrow (a \notin X \lor b \notin Y) \land (a \notin X \lor b \notin Z)$$ $$\Rightarrow$$ $((a,b) \notin X \times Y) \land ((a,b) \notin X \times Z)) \Rightarrow (a,b) \notin (X \times Y) \cup (X \times Z).$ So, he have proven that $(a,b) \notin X \times (Y \cup Z)$ implies that $(a,b) \notin (X \times Y) \cup (X \times Z)$. This allows to conclude that $X \times (Y \cup Z) = (X \times Y) \cup (X \times Z)$. **Exercise 9.** For two sets X and Y, prove that the following three statements are equivalent: i) $$X \subseteq Y$$, ii) $X \cap Y = X$, iii) $X \cup Y = Y$. Solution. We have to prove i) \Leftrightarrow ii), ii) \Leftrightarrow iii) and iii) \Leftrightarrow i). By Law of Syllogism, this is equivalent to show i) \Rightarrow ii), ii) \Rightarrow iii) and iii) \Rightarrow i). Proof of $i) \Rightarrow ii$). Assume that $X \subseteq Y$. Then ii) follows by the Absorption Law. We can prove it as follows: by definition of intersection, we have that $X \cap Y \subseteq X$. On the other hand, consider $x \in X$. By i), we have that $x \in Y$. By conjunction, we have that $x \in X$ and $x \in Y$, i.e., $x \in X \cap Y$. We have shown that $X \subseteq X \cap Y$. Hence $X = X \cap Y$. Proof of ii) $\Rightarrow iii$). Assume that $X \cap Y = X$. Then $$X \cup Y = (X \cap Y) \cup Y = (X \cup Y) \cap (Y \cup Y) = (X \cup Y) \cap Y = Y$$ where we used the Absorption Law (or the first implication that we proved) in the last equality since $Y \subseteq X \cup Y$. Proof of $iii) \Rightarrow i$). Assume now that $X \cup Y = Y$. In general, we know that $X \subseteq X \cup Y$, but since $X \cup Y = Y$, we can conclude that $X \subseteq Y$. **Exercise 10.** For two sets X and Y, show that i) $(X \cup Y) \cap (X \cup \overline{Y}) = X$, ii) $(X \cap Y) \cup (X \cap \overline{Y}) = X$. Solution. i) By Distributive Law, we have $$(X \cup Y) \cap (X \cup \overline{Y}) = X \cup (Y \cap \overline{Y}) = X \cup \emptyset = X,$$ since $Y \cap \overline{Y} = \emptyset$. ii) Also by Distributive law $$(X \cap Y) \cup (X \cap \overline{Y}) = X \cap (Y \cup \overline{Y}) = X \cap \mathcal{U} = X,$$ since $$Y \cup \overline{Y} = \mathcal{U}$$.