> MA0301

ELEMENTARY DISCRETE MATHEMATICS
NTNU, SPRING 2020

Set 3
You can deliver the exercises (before 10:30am on the indicated day) on the 3 floor of the central building, in an area called Matteland. The box number is 0613 .
If you want feedback on each exercise, write "want comments"/"nsker retting", otherwise your TA will only write "godkjent" /"ikke godkjent".

Exercise 1. Use the rules of inference to show that the trueness of:

$$
\begin{aligned}
& \text { i) }(r \vee p) \wedge(\neg q \vee \neg p) \\
& \text { ii) }(z \vee \neg s) \\
&(r \vee \neg q) \\
&(p \wedge \neg q) \wedge(\neg z \vee r) \wedge(\neg(p \wedge \neg q) \vee s) \Rightarrow r
\end{aligned}
$$

Solution. 1)

	Step	Reason
1	$\neg q \vee \neg p$	Premise
2	$q \Rightarrow \neg p$	Equivalence of (1)
3	$r \vee p$	Premise
4	$\neg(\neg p) \vee r$	Double negation and commutativity in (3)
5	$\neg p \Rightarrow r$	Equivalence of (4)
6	$q \Rightarrow r$	Law of Syllogism from (2) and (5)
7	$\neg q \vee r$	Equivalence of (6)
8	$r \vee \neg q$	Commutativity in (8)

2)

	Step	Reason
1	$p \wedge \neg q$	Premise
2	$\neg(p \wedge \neg q) \vee s$	Premise
3	$(p \wedge \neg q) \Rightarrow s$	Equivalence of (2)
4	s	Modus Ponens from (1) and (3)
5	$z \vee \neg s$	Premise
6	$s \Rightarrow z$	Equivalence of (5)
7	z	Modus Ponens from (4) and (6)
8	$\neg z \vee r$	Premise
9	$z \Rightarrow r$	Equivalence of (8)
10	r	Modus Ponens from (7) and (9)

Exercise 2. Express the following statements in English. Then determine which of them are true in the natural numbers, $\mathbb{N}:=\{0,1,2,3,4,5, \ldots\}$ and which are true in real numbers \mathbb{R}.
a) $\forall x \forall y((x>y) \Rightarrow \exists z((x>z) \wedge(z>y)))$
b) $\forall x(x=0 \vee \neg(x+x=x))$

Solution. a) If x and y are such that x is greater than y, then there exists z such that x is greater than z and z is greater than y.

This is not true in the natural numbers. For instance, take $x=1$ and $y=0$. Then $x>y$ but there is no natural number z between 0 and 1 . The statement is true in the real numbers because of the density of real numbers (there is a real number between two real numbers).
2) For any number x, we have that x is equal to zero or the double of x is different than x.

This is true in both \mathbb{N} and \mathbb{R}. The following argument works in both cases. If x is not zero and $2 x=x$, we can divide by x (since $x \neq 0$) and then we would have $2=1$, which is a contradiction. Hence, we cannot have that $2 x=x$.

Exercise 3. What is the power set of $A:=\{\{a, b\},\{c\},\{d, e, f\}\}$?
Solution. The power set of A is defined as the collection of subsets of A. We have then that the power set of A is the following:

$$
\mathcal{P}(A)=\{\emptyset,\{\{a, b\}\},\{\{c\}\},\{\{d, e, f\}\},\{\{a, b\},\{c\}\},\{\{c\},\{d, e, f\}\},\{\{a, b\},\{d, e, f\}\}, A\}
$$

Exercise 4. Let X and Y be two sets. Show that $X-Y=X \cap \bar{Y}$.
Solution. Assume that X and Y are sets in the universe \mathcal{U}. Then

$$
\begin{aligned}
x \in X-Y & \Leftrightarrow x \in X \wedge x \notin Y \\
& \Leftrightarrow x \in X \wedge x \in \mathcal{U} \wedge x \notin Y \quad \text { (identity law } A \cap \mathcal{U}=A \text {) } \\
& \Leftrightarrow x \in X \wedge x \in \bar{Y} \\
& \Leftrightarrow x \in X \cap \bar{Y} .
\end{aligned}
$$

Hence $X-Y=X \cap \bar{Y}$.
Exercise 5. For two sets X and Y, show that $A:=X-Y$ and $B:=X \cap Y$ are disjoint sets and that $X=A \cup B$.

Solution. Using Exercise 4, we have that $A=X-Y=X \cap \bar{Y}$. Hence

$$
A \cap B=(X-Y) \cap(X \cap Y)=(X \cap \bar{Y}) \cap(X \cap Y)=X \cap X \cap(Y \cap \bar{Y})=X \cap \emptyset=\emptyset
$$

by using the Commutativity Law, that $Y \cap \bar{Y}=\emptyset$ and the Absorption Law. Hence A and B are disjoint sets. In a similar way, we have

$$
X \cup Y=(X \cap \bar{Y}) \cup(X \cap Y)=X \cup(Y \cap \bar{Y})=X \cup \emptyset=X
$$

where in the second equality we use the Distributive Law and the Absorption Law in the last equality.

Exercise 6. Let A, B, C be sets. The symmetric difference was defined by $A \triangle B:=(A-B) \cup(B-$ A). Show that a) $A \triangle B=(A \cup B)-(A \cap B)$, b) $A \triangle B=B \triangle A$ and that c) $A \triangle(B \triangle C)=(A \triangle B) \triangle C$.

Solution. 1) Using Exercise 4 and Distributive Law, we have that

$$
\begin{aligned}
A \triangle B & =(A-B) \cup(B-A) \\
& =(A \cap \bar{B}) \cup(B \cap \bar{A}) \\
& =((A \cap \bar{B}) \cup B) \cap((A \cap \bar{B}) \cup \bar{A}) \\
& =((A \cup B) \cap(\bar{B} \cup B)) \cap((A \cup \bar{A}) \cap(\bar{B} \cup \bar{A})) \\
& =((A \cup B) \cap \mathcal{U}) \cap(\mathcal{U} \cap(\bar{B} \cup \bar{A})) \\
& =(A \cup B) \cap(\overline{A \cap B}) \quad(\text { Identity Law and DeMorgan's Law) } \\
& =(A \cup B)-(A \cap B)) \quad \text { (Exercise 4). }
\end{aligned}
$$

2) This immediately follows from Commutativity Law of union of sets:

$$
A \triangle B=(A-B) \cup(B-A)=(B-A) \cup(A-B)=B \triangle A
$$

3)

$$
\begin{aligned}
A \triangle(B \triangle C) & =(A \cap(\overline{B \triangle C})) \cup((B \triangle C) \cap \bar{A}) \\
& =(A \cap((B \cap \bar{C}) \cup(C \cap \bar{B}))) \cup(((B \cap \bar{C}) \cup(C \cap \bar{B})) \cap \bar{A}) \\
& =(A \cap((\bar{B} \cup C) \cap(\bar{C} \cup B))) \cup(((B \cap \bar{C}) \cup(C \cap \bar{B})) \cap \bar{A}) \\
& =(A \cap((\bar{B} \cap(\bar{C} \cup B)) \cup(C \cap(\bar{C} \cup B))) \cup(((B \cap \bar{C}) \cup(C \cap \bar{B})) \cap \bar{A}) \\
& =(A \cap((\bar{B} \cap \bar{C}) \cup(\bar{B} \cap B)) \cup(C \cap \bar{C}) \cup(C \cap B))) \cup(((B \cap \bar{C}) \cup(C \cap \bar{B})) \cap \bar{A}) \\
& =(A \cap((\bar{B} \cap \bar{C}) \cup \emptyset \cup \emptyset \cup(C \cap B))) \cup(((B \cap \bar{C}) \cup(C \cap \bar{B})) \cap \bar{A}) \\
& =(A \cap((\bar{B} \cap \bar{C}) \cup(C \cap B))) \cup(((B \cap \bar{C}) \cup(C \cap \bar{B})) \cap \bar{A}) \\
& =(A \cap \bar{B} \cap \bar{C}) \cup(A \cap C \cap B) \cup(B \cap \bar{C} \cap \bar{A}) \cup(C \cap \bar{B} \cap \bar{A})
\end{aligned}
$$

Now, by part 2, we have that $(A \triangle B) \triangle C=C \triangle(A \triangle B)$. We can use the previous development but just changing the label of the sets:

$$
C \triangle(A \triangle B)=(C \cap \bar{A} \cap \bar{B}) \cup(C \cap B \cap A) \cup(A \cap \bar{B} \cap \bar{C}) \cup(B \cap \bar{A} \cap \bar{C}) .
$$

Finally, because union and intersection of sets is commutative, we conclude that

$$
\begin{aligned}
A \triangle(B \triangle C) & =(A \cap \bar{B} \cap \bar{C}) \cup(A \cap C \cap B) \cup(B \cap \bar{C} \cap \bar{A}) \cup(C \cap \bar{B} \cap \bar{A}) \\
& =(A \cap \bar{B} \cap \bar{C}) \cup(C \cap B \cap A) \cup(B \cap \bar{A} \cap \bar{C}) \cup(C \cap \bar{A} \cap \bar{B}) \quad \text { (rearranging intersections) } \\
& =(C \cap \bar{A} \cap \bar{B}) \cup(C \cap B \cap A) \cup(A \cap \bar{B} \cap \bar{C}) \cup(B \cap \bar{A} \cap \bar{C}) \quad \text { (rearranging unions) } \\
& =C \triangle(A \triangle B)=(A \triangle B) \triangle C,
\end{aligned}
$$

that is what we wanted to prove.
Exercise 7. Let $A:=\{1,2,3,4,5,6,\{1\}\}$. Determine the set B such that $B=A \cup(A \cap \mathcal{P}(A))$.
Solution. One can try to compute $\mathcal{P}(A)$ and the respective intersection and union with A. However, we can proceed in general as follows: note that $A \cap \mathcal{P}(A) \subset A$ and by Absorption law, $B=$ $A \cup(A \cap \mathcal{P}(A))=A$.

Exercise 8. For two sets X and Y to show that they are equal, i.e., $X=Y$, you learned that you must show that $X \subseteq Y$ and $Y \subseteq X$. Show that this is equivalent to showing: if $x \in X$ then $x \in Y$ and if $x \notin X$ then $x \notin Y$. Now, use the latter to show that

$$
X \times(Y \cup Z)=(X \times Y) \cup(X \times Z)
$$

Solution. We know that $X \subseteq Y$ is equivalent to the statement $x \in X \Rightarrow x \in Y$. We also have that $Y \subseteq X$ is equivalent to $x \in Y \Rightarrow x \in X$. In general, we know that for $(p \Rightarrow q) \equiv(\neg q \Rightarrow \neg p)$. So, $(x \in Y \Rightarrow x \in X) \Leftrightarrow(x \notin X \Rightarrow x \notin Y)$. Hence $X \subseteq Y \wedge Y \subseteq X$ is equivalent to the statement $x \in X \Rightarrow x \in Y$ and $x \notin X \Rightarrow x \notin Y$.

Now, assume that $(a, b) \in X \times(Y \cup Z)$. This is equivalent to say that $a \in X$ and $b \in Y \cup Z$. The latter statement implies (it is equivalent, actually) that $b \in Y \vee b \in Z$. Hence

$$
\begin{gathered}
(a, b) \in X \times(Y \cup Z) \Rightarrow a \in X \wedge(b \in Y \vee b \in Z) \Rightarrow(a \in X \wedge b \in Y) \vee(a \in X \wedge b \in Z) \\
\Rightarrow((a, b) \in X \times Y) \vee((a, b) \in(X, Z)) \Rightarrow(a, b) \in(X \times Y) \cup(X \times Z) .
\end{gathered}
$$

We have proven that $(a, b) \in X \times(Y \cup Z)$ implies that $(a, b) \in(X \times Y) \cup(X \times Z)$. Now, assume that $(a, b) \notin X \times(Y \cup Z)$. This implies that $a \notin X$ or $b \notin Y \cup Z$. The second statement implies that $b \notin Y$ and $b \notin Z$. So we have that

$$
\begin{gathered}
a \notin X \vee(b \notin Y \wedge b \notin Z) \Rightarrow(a \notin X \vee b \notin Y) \wedge(a \notin X \vee b \notin Z) \\
\Rightarrow((a, b) \notin X \times Y) \wedge((a, b) \notin X \times Z)) \Rightarrow(a, b) \notin(X \times Y) \cup(X \times Z) .
\end{gathered}
$$

So, he have proven that $(a, b) \notin X \times(Y \cup Z)$ implies that $(a, b) \notin(X \times Y) \cup(X \times Z)$. This allows to conclude that $X \times(Y \cup Z)=(X \times Y) \cup(X \times Z)$.

Exercise 9. For two sets X and Y, prove that the following three statements are equivalent:
i) $X \subseteq Y$, ii) $X \cap Y=X$, iii) $X \cup Y=Y$.

Solution. We have to prove $i) \Leftrightarrow i i), i i) \Leftrightarrow i i i)$ and $i i i) \Leftrightarrow i$. By Law of Syllogism, this is equivalent to show $i) \Rightarrow i i), i i) \Rightarrow i i i)$ and $i i i) \Rightarrow i)$.

Proof of $i) \Rightarrow i i)$. Assume that $X \subseteq Y$. Then $i i)$ follows by the Absorption Law. We can prove it as follows: by definition of intersection, we have that $X \cap Y \subseteq X$. On the other hand, consider $x \in X$. By i), we have that $x \in Y$. By conjunction, we have that $x \in X$ and $x \in Y$, i.e., $x \in X \cap Y$. We have shown that $X \subseteq X \cap Y$. Hence $X=X \cap Y$.

Proof of $i i) \Rightarrow i i i)$. Assume that $X \cap Y=X$. Then

$$
X \cup Y=(X \cap Y) \cup Y=(X \cup Y) \cap(Y \cup Y)=(X \cup Y) \cap Y=Y,
$$

where we used the Absorption Law (or the first implication that we proved) in the last equality since $Y \subseteq X \cup Y$.

Proof of $i i i) \Rightarrow i$. Assume now that $X \cup Y=Y$. In general, we know that $X \subseteq X \cup Y$, but since $X \cup Y=Y$, we can conclude that $X \subseteq Y$.

Exercise 10. For two sets X and Y, show that i) $(X \cup Y) \cap(X \cup \bar{Y})=X$, ii) $(X \cap Y) \cup(X \cap \bar{Y})=X$.
Solution. i) By Distributive Law, we have

$$
(X \cup Y) \cap(X \cup \bar{Y})=X \cup(Y \cap \bar{Y})=X \cup \emptyset=X
$$

since $Y \cap \bar{Y}=\emptyset$.
ii) Also by Distributive law

$$
(X \cap Y) \cup(X \cap \bar{Y})=X \cap(Y \cup \bar{Y})=X \cap \mathcal{U}=X
$$

since $Y \cup \bar{Y}=\mathcal{U}$.

