MA0301 ELEMENTARY DISCRETE MATHEMATICS NTNU, SPRING 2020

Rule of Inference	Related Logical Implication	Name of Rule
1) $p \xrightarrow{p \to q} q$	$[p \land (p \to q)] \to q$	Rule of Detachment (Modus Ponens)
2) $p \rightarrow q$ $q \rightarrow r$ $\overline{q \rightarrow r}$	$[(p \to q) \land (q \to r)] \to (p \to r)$	Law of the Syllogism
3) $p \rightarrow q$ $\neg q$	$[(p \to q) \land \neg q] \to \neg p$	Modus Tollens
$\begin{array}{c} \therefore \neg p \\ \textbf{4)} p \\ \underline{q} \\ \hline \end{array}$		Rule of Conjunction
$\begin{array}{c} \therefore p \land q\\ \textbf{5)} p \lor q\\ \hline \neg p\\ \hline \vdots q \end{array}$	$[(p \lor q) \land \neg p] \to q$	Rule of Disjunctive Syllogism
$6) \xrightarrow{\neg p \to F_0} \overline{\therefore p}$	$(\neg p \rightarrow F_0) \rightarrow p$	Rule of Contradiction
7) $p \wedge q$ $\therefore p$	$(p \land q) \rightarrow p$	Rule of Conjunctive Simplification
8) $p \longrightarrow p \lor q$	$p \rightarrow p \lor q$	Rule of Disjunctive Amplification
9) $p \land q$ $p \rightarrow (q \rightarrow r)$ $\therefore r$	$[(p \land q) \land [p \to (q \to r)]] \to r$	Rule of Conditional Proof
10) $p \rightarrow r$ $q \rightarrow r$ $(p \lor q) \rightarrow r$	$[(p \to r) \land (q \to r)] \to [(p \lor q) \to r]$	Rule for Proof by Cases
11) $p \rightarrow q$ $r \rightarrow s$ $\frac{p \lor r}{g \lor s}$	$[(p \to q) \land (r \to s) \land (p \lor r)] \to (q \lor s)$	Rule of the Constructive Dilemma
12) $p \rightarrow q$ $r \rightarrow s$ $\neg q \lor \neg s$ $\therefore \neg p \lor \neg r$	$[(p \to q) \land (r \to s) \land (\neg q \lor \neg s)] \to (\neg p \lor \neg r)$	Rule of the Destructive Dilemma

Set 2

The table was taken from Grimaldi, *Discrete and Combinatorial Mathematics*, 5. edition, page 78. Recall that \rightarrow equals \Rightarrow in our notation.

Exercise 1. Use truth tables to determine which of the following statements are tautologies and which are contradictions:

a)
$$q \lor (q \Rightarrow \neg q)$$
 b) $\neg ((\neg r \land r) \Rightarrow s)$ c) $((t \Rightarrow s) \Rightarrow t) \Rightarrow t$

Exercise 2. Check whether the following inference rules are sound:

$$a) \ (p \Rightarrow q) \land (p \lor \neg r) \land (\neg r) \Rightarrow (\neg p) \qquad b) \ ((p \land q) \Rightarrow r) \land \neg (p \Rightarrow r) \Rightarrow (q \Rightarrow r)$$

Table 2.19

Date: January 16, 2020.

Exercise 3. Negate the following statements:

a)
$$\neg r \land (r \lor \neg q)$$
 b) $s \Rightarrow (\neg t \Leftrightarrow r)$

Exercise 4. Lewis-Zax (page 131): exercise 12.3. a) and b).

Exercise 5. Provide the reasons for each step (using inference rules) required to verify that the following argument is valid:

$$(p \land (p \Rightarrow q) \land (s \lor r) \land (r \Rightarrow \neg q)) \Rightarrow (s \lor t)$$

Exercise 6. Provide the reasons for each step (using inference rules) required to verify that the following argument is valid:

$$(\neg p \lor q) \Rightarrow r$$
$$r \Rightarrow (s \lor t)$$
$$\neg s \land \neg u$$
$$\neg u \Rightarrow \neg t$$
$$\therefore p$$

Exercise 7. Show that the following argument is invalid by providing a set of truth values for the primitive statements p, q, r, s such that premises are true while the conclusion is false.

$$p$$

$$p \Rightarrow r$$

$$p \Rightarrow (q \lor \neg r)$$

$$\neg q \lor \neg s$$

$$\therefore s$$

Exercise 8. Let the universe be the real numbers, $U = \mathbb{R}$. Negate and simplify:

a) $\forall x \forall y \ [(x > y) \Rightarrow (x - y > 0)]$ b) $\forall x \forall y \ [(x < y) \Rightarrow \exists z \ (x < z < y)]$

Exercise 9. Prove that $\forall x \ p(x) \lor \forall x \ q(x)$ logically implies $\forall x \ (p(x) \lor q(x))$, where p(x), q(x) are open statements with respect to the variable x from the universe U. Is the opposite statement true as well?

Exercise 10. Translate the following English phrases into statements (for real numbers in \mathbb{R} ; use that I(x) means that: x is an integer, i.e., $x \in \mathbb{Z}$.):

- (1) Every square of an integer is greater than zero.
- (2) Every integer is even or odd.
- (3) There is a real number that, when multiplied by any real number, produces that number.
- (4) For every integer there is a greater integer.

Recall that an even integer writes m = 2k, whereas an odd integer writes q = 2s + 1, where k, are integers.