MA0301

ELEMENTARY DISCRETE MATHEMATICS
 NTNU, SPRING 2020

Set 2

Table 2.19

The table was taken from Grimaldi, Discrete and Combinatorial Mathematics, 5. edition, page 78. Recall that \rightarrow equals \Rightarrow in our notation.

Exercise 1. Use truth tables to determine which of the following statements are tautologies and which are contradictions:
a) $q \vee(q \Rightarrow \neg q)$
b) $\neg((\neg r \wedge r) \Rightarrow s)$
c) $((t \Rightarrow s) \Rightarrow t) \Rightarrow t$

Exercise 2. Check whether the following inference rules are sound:
a) $(p \Rightarrow q) \wedge(p \vee \neg r) \wedge(\neg r) \Rightarrow(\neg p)$
b) $((p \wedge q) \Rightarrow r) \wedge \neg(p \Rightarrow r) \Rightarrow(q \Rightarrow r)$

Date: January 16, 2020.

Exercise 3. Negate the following statements:

$$
\text { a) } \neg r \wedge(r \vee \neg q) \quad \text { b) } s \Rightarrow(\neg t \Leftrightarrow r)
$$

Exercise 4. Lewis-Zax (page 131): exercise 12.3. a) and b).
Exercise 5. Provide the reasons for each step (using inference rules) required to verify that the following argument is valid:

$$
(p \wedge(p \Rightarrow q) \wedge(s \vee r) \wedge(r \Rightarrow \neg q)) \Rightarrow(s \vee t)
$$

Exercise 6. Provide the reasons for each step (using inference rules) required to verify that the following argument is valid:

$$
\begin{aligned}
& (\neg p \vee q) \Rightarrow r \\
& r \Rightarrow(s \vee t) \\
& \neg s \wedge \neg u \\
& \neg u \Rightarrow \neg t \\
& \therefore p
\end{aligned}
$$

Exercise 7. Show that the following argument is invalid by providing a set of truth values for the primitive statements p, q, r, s such that premises are true while the conclusion is false.

$$
\begin{aligned}
& p \\
& p \Rightarrow r \\
& p \Rightarrow(q \vee \neg r) \\
& \neg q \vee \neg s \\
& \hline \therefore s
\end{aligned}
$$

Exercise 8. Let the universe be the real numbers, $U=\mathbb{R}$. Negate and simplify:
a) $\forall x \forall y[(x>y) \Rightarrow(x-y>0)]$
b) $\forall x \forall y[(x<y) \Rightarrow \exists z(x<z<y)]$

Exercise 9. Prove that $\forall x p(x) \vee \forall x q(x)$ logically implies $\forall x(p(x) \vee q(x))$, where $p(x), q(x)$ are open statements with respect to the variable x from the universe U. Is the opposite statement true as well?

Exercise 10. Translate the following English phrases into statements (for real numbers in \mathbb{R}; use that $I(x)$ means that: x is an integer, i.e., $x \in \mathbb{Z}$.):
(1) Every square of an integer is greater than zero.
(2) Every integer is even or odd.
(3) There is a real number that, when multiplied by any real number, produces that number.
(4) For every integer there is a greater integer.

Recall that an even integer writes $m=2 k$, whereas an odd integer writes $q=2 s+1$, where k, are integers.

