MA0301 ELEMENTARY DISCRETE MATHEMATICS NTNU, SPRING 2020

Set 12

Exercise 1. Let B be a Boolean algebra. For $x, y, z \in B$ find the dual expressions of

 $i) \ (x+\bar{y})\cdot\overline{(\bar{z}+y)} \qquad ii) \ (1+x)\cdot y + x\cdot\bar{y}\cdot z \qquad iii) \ (x\cdot y+1)\cdot(0+x)\cdot z$

Exercise 2. 1) Let the natural number \mathbb{N} be our universe. We start by defining the property P(q): q is even. We define the relation R on \mathbb{N} as follows: $\forall_{n,m} (n,m) \in R$ iff P(n+m).

a) Show that R is an equivalence relation.

- b) Can you determine how many equivalence classes the relation R has?
- 2) Given the set $F = \{a, b, c, d, e\}$ with an ordering described by the diagram

Write down all subsets of F in which the element c is a minimal element.

Exercise 3. a) Let G be a planar graph with eight vertices. What is the maximal number of edges possible in G?

b) Let G be a finite graph. Can G have a subgraph H (H is supposed to be different from G) so that G and H are isomorphic?

- c) Consider the graph G with $V(G) := \{a, b, c, d, e, f\}$ and $E(G) := \{\{a, c\}, \{a, d\}, \{a, e\}, \{b, e\}, \{b, f\}\}.$
 - i) Determine G a
 - ii) Find the connected components of G a.

Exercise 4. Let G be a planar graph with fewer than 12 vertices. Show that G has a vertex of degree at most 4. (Hint: Recall the formula $|E| \leq 3|V| - 6$.)

Exercise 5. Show that the following graph is not planar.

Date: April 2, 2020.

(*Hint:* Notice that, in the case that the graph is planar, it contains no triangles. Then, any face would be bordered by at least 4 edges)

Exercise 6. Use induction to show that for all natural numbers: $4\sum_{k=1}^{n} (k^2 + 2k)(k+4) = (n^2 + n)(n+4)(n+5)$.

Exercise 7. Use the laws of logic to simplify the statement: $(p \lor (p \land q) \lor (p \land q \land \neg r)) \land ((p \land r \land t) \lor t)$

Exercise 8. Lewis-Zax (page 67): exercise 6.1.

Exercise 9. Use the binomial theorem $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$ to compute the number

$$\sum_{i=0}^{27} \binom{27}{i} (-3)^{2i+1}$$

Exercise 10. Draw the state diagram D(M) of the automaton M with states $S := \{s_0, s_1, s_2\}$, accepting states $Y := \{s_0\}$, input alphabet $I := \{a, b\}$, described in the state table T(M):

	ν	
	a b	
s_0	$s_0 s_1$	
s_1	$s_0 \ s_2$	
s_2	$s_2 \ s_2$	

Exercise 11. Draw the state diagram D(M) of the automaton M with states $S := \{s_0, s_1, s_2\}$, accepting states $Y := \{s_0, s_2\}$, input alphabet $I := \{a, b\}$, described in the following state table T(M):

	u	
	a b	
s_0	$s_1 s_0$	
s_1	$s_2 \ s_0$	
s_2	$s_2 s_1$	

Which of the following input words are accepted by M and which are not accepted by M?

1) bbaab

2) abbab

3) aabbb

4) babaab

MA0301

5) aaabbb

Exercise 12. Let $\Sigma := \{a, b\}$ and define the language $L := \{a^m b^n | m, n > 0\}$. Construct an automaton A' which will accept the language L(A').

Exercise 13. a) Draw the table for the automaton A in Fig. 1.

b) Find the language L(A) accepted by the automaton A in Fig. 1.

FIGURE 1. The automaton A.

Exercise 14. Lewis-Zax (page 197/198): exercise 19.1, 19.2 a),b), 19.4.

Exercise 15. Draw the state diagram of the finite state machine N corresponding to the transition table

N	ν	ω
	$0 \ 1$	0 1
s_0	$s_0 s_1$	0.0
s_1	$s_1 \ s_2$	0 0
s_2	$s_2 \ s_3$	0 0
s_3	$s_3 \ s_4$	0 0
s_4	$s_4 \ s_5$	0 0
s_5	$s_5 \ s_0$	$0 \ 1$

What is the output corresponding to the input sequence 0110111011?

Exercise 16. Given two states s_0, s_1 (s_0 being the starting state), complete the following diagram by adding arrows:

 s_0 s_1

so that it becomes a state diagram of the finite state machine M, which is supposed to recognise (with an output 1) every 0 appearing in an input string x that is preceded by another 0.