MA0301
 ELEMENTARY DISCRETE MATHEMATICS
 NTNU, SPRING 2020

SEt 12
Exercise 1. Let B be a Boolean algebra. For $x, y, z \in B$ find the dual expressions of
i) $(x+\bar{y}) \cdot \overline{(\bar{z}+y)}$
ii) $(1+x) \cdot y+x \cdot \bar{y} \cdot z$
iii) $(x \cdot y+1) \cdot(0+x) \cdot z$

Exercise 2. 1) Let the natural number \mathbb{N} be our universe. We start by defining the property $P(q)$: q is even. We define the relation R on \mathbb{N} as follows: $\forall_{n, m}(n, m) \in R$ iff $P(n+m)$.
a) Show that R is an equivalence relation.
b) Can you determine how many equivalence classes the relation R has?
2) Given the set $F=\{a, b, c, d, e\}$ with an ordering described by the diagram

Write down all subsets of F in which the element c is a minimal element.
Exercise 3. a) Let G be a planar graph with eight vertices. What is the maximal number of edges possible in G ?
b) Let G be a finite graph. Can G have a subgraph H (H is supposed to be different from G) so that G and H are isomorphic?
c) Consider the graph G with $V(G):=\{a, b, c, d, e, f\}$ and $E(G):=\{\{a, c\},\{a, d\},\{a, e\},\{b, e\},\{b, f\}\}$.
i) Determine $G-a$
ii) Find the connected components of $G-a$.

Exercise 4. Let G be a planar graph with fewer than 12 vertices. Show that G has a vertex of degree at most 4. (Hint: Recall the formula $|E| \leq 3|V|-6$.)

Exercise 5. Show that the following graph is not planar.

(Hint: Notice that, in the case that the graph is planar, it contains no triangles. Then, any face would be bordered by at least 4 edges)

Exercise 6. Use induction to show that for all natural numbers: $4 \sum_{k=1}^{n}\left(k^{2}+2 k\right)(k+4)=\left(n^{2}+\right.$ $n)(n+4)(n+5)$.

Exercise 7. Use the laws of logic to simplify the statement: $(p \vee(p \wedge q) \vee(p \wedge q \wedge \neg r)) \wedge((p \wedge r \wedge t) \vee t)$
Exercise 8. Lewis-Zax (page 67): exercise 6.1.
Exercise 9. Use the binomial theorem $(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}$ to compute the number

$$
\sum_{i=0}^{27}\binom{27}{i}(-3)^{2 i+1}
$$

Exercise 10. Draw the state diagram $D(M)$ of the automaton M with states $S:=\left\{s_{0}, s_{1}, s_{2}\right\}$, accepting states $Y:=\left\{s_{0}\right\}$, input alphabet $I:=\{a, b\}$, described in the state table $T(M)$:

	ν	
	$a r$	
s_{0}	s_{0}	s_{1}
s_{1}	s_{0}	s_{2}
s_{2}	s_{2}	s_{2}

Exercise 11. Draw the state diagram $D(M)$ of the automaton M with states $S:=\left\{s_{0}, s_{1}, s_{2}\right\}$, accepting states $Y:=\left\{s_{0}, s_{2}\right\}$, input alphabet $I:=\{a, b\}$, described in the following state table $T(M)$:

	ν	
	a	
s_{0}	s_{1}	s_{0}
s_{1}	s_{2}	s_{0}
s_{2}	s_{2}	s_{1}

Which of the following input words are accepted by M and which are not accepted by M ?

1) $b b a a b$
2) $a b b a b$
3) $a a b b b$
4) $b a b a a b$
5) $a a a b b b$

Exercise 12. Let $\Sigma:=\{a, b\}$ and define the language $L:=\left\{a^{m} b^{n} \mid m, n>0\right\}$. Construct an automaton A^{\prime} which will accept the language $L\left(A^{\prime}\right)$.

Exercise 13. a) Draw the table for the automaton A in Fig. 1.
b) Find the language $L(A)$ accepted by the automaton A in Fig. 1.

Figure 1. The automaton A.

Exercise 14. Lewis-Zax (page 197/198): exercise 19.1, 19.2 a), b), 19.4.
Exercise 15. Draw the state diagram of the finite state machine N corresponding to the transition table

| N | ν | | ω | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | 0 | 1 | 0 | 1 |
| s_{0} | s_{0} | s_{1} | 0 | 0 |
| s_{1} | s_{1} | s_{2} | 0 | 0 |
| s_{2} | s_{2} | s_{3} | 0 | 0 |
| s_{3} | s_{3} | s_{4} | 0 | 0 |
| s_{4} | s_{4} | s_{5} | 0 | 0 |
| s_{5} | s_{5} | s_{0} | 0 | 1 |

What is the output corresponding to the input sequence 0110111011?

Exercise 16. Given two states s_{0}, s_{1} (s_{0} being the starting state), complete the following diagram by adding arrows:
s_{1}
so that it becomes a state diagram of the finite state machine M, which is supposed to recognise (with an output 1) every 0 appearing in an input string x that is preceded by another 0.

