MA0301 ELEMENTARY DISCRETE MATHEMATICS NTNU, SPRING 2019

Exercise Set 6

NOTE: Problems marked with a \star are mandatory. Their solutions must be included to get the set approved.

* Exercise 1. Recall that binary relations are sets, such that the set operations \cup , \cap and complement apply to them. Let A, B be two non-empty sets. Let $R \subseteq A \times B$ be a binary relation. We denote the domain of R by dom(R) and the range of R by ran(R). The complement of R is defined as $\overline{R} := (A \times B) \setminus R = (A \times B) - R$.

Now let $R_1, R_2 \subseteq A \times B$ be two binary relations. Show that:

 $i) \operatorname{dom}(R_1 \cup R_2) = \operatorname{dom}(R_1) \cup \operatorname{dom}(R_2)$

 $ii) \operatorname{ran}(R_1 \cup R_2) = \operatorname{ran}(R_1) \cup \operatorname{ran}(R_2)$

iii) dom $(R_1 \cap R_2) \subseteq dom(R_1) \cap dom(R_2)$

iv) $\operatorname{ran}(R_1 \cap R_2) \subseteq \operatorname{ran}(R_1) \cap \operatorname{ran}(R_2)$.

Solution. We show i) as the proof of ii) is done by simply replacing "domain" everywhere by "range": note that $(a,b) \in R_1 \cup R_2 \Leftrightarrow ((a,b) \in R_1 \vee (a,b) \in R_2)$. Now, $a \in \text{dom}(R_1 \cup R_2)$ iff there is some (a,b) such that $(a,b) \in R_1 \cup R_2$ iff $(a,b) \in R_1 \vee (a,b) \in R_2$ iff $(a \in \text{dom}(R_1) \vee a \in \text{dom}(R_2))$. All together, this gives the first equivalence in the following:

$$a \in \operatorname{dom}(R_1 \cup R_2) \Leftrightarrow (a \in \operatorname{dom}(R_1) \lor a \in \operatorname{dom}(R_2)) \Leftrightarrow (a \in \operatorname{dom}(R_1) \cup \operatorname{dom}(R_2)).$$

The second follows by definition of \cup .

As for iii) and iv), we only show iii) as the proof of iv) follows as above: $a \in \text{dom}(R_1 \cap R_2)$ iff there is some (a, b) such that $(a, b) \in R_1 \cap R_2$ iff $(a, b) \in R_1 \wedge (a, b) \in R_2$. The last claim implies that $a \in \text{dom}(R_1) \wedge a \in \text{dom}(R_2)$, which is equivalent to $a \in \text{dom}(R_1) \cap \text{dom}(R_2)$.

* **Exercise 2.** You have the set $A = \{a, b, c, d, e, f\}$. We define the following two binary relations on A:

$$S_1 = \{(a, b), (b, c), (c, d), (d, e), (e, f), (f, a)\}$$

= $\{(a, b), (b, c), (c, d), (d, e), (e, f), (f, a), (a, d), (d, a), (f, c), (c, f)\}.$

1) Draw the arrow diagrams representing these two binary relation.

2) Give the arrow diagram representations for:

(a) $S_1 \cap S_2$, (b) $S_1 \cup S_2$, (c) $S_1 - S_2$, (d) \overline{S}_1 (e) S_1^{-1} (f) $S_1 \circ S_2$.

* Exercise 3. Consider the set $S = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$. Define the relation R on S that relates every number in S to those that have the same number of divisors as it. Show that R is an equivalence relation. Find the partition of S corresponding to R.

 S_2

Date: February 18, 2019.

Solution. While this problem is fairly concrete, it is perhaps easier to show that this is an equivalence relation by working "abstractly": every number x has the same number of divisor as itself, i.e. $(x, x) \in R$ for every $x \in S$, and hence reflexivity follows; (x, y) is in the relation iff x and y have the same number of divisors iff (y, x) is in the relation, and hence we get symmetry; and finally, for transitivity, note that $(x, y) \in R$ and $(y, z) \in R$ iff x has the same number of divisors as y and y has the same number of divisors as z, so that by the transitivity of equality for whole numbers, x has the same number of divisors as z, implying $(x, z) \in R$, and hence we are done.

We note here that we consistently used that equality for whole numbers is an equivalence relation to show that R is one, too. This is often useful in similar situations.

Finding the partition: 1 is the only number with only 1 divisor.

2, 3, 5, 7, 11 are the only primes and thus have 2 divisors. While 4, 8, 9 are composite, they likewise only have 2 divisors, being squares and cubes.

6, 10, 12 are all composite with 3 divisors.

The partition is thus given as $\{1\}, \{2, 3, 4, 5, 7, 8, 9, 11\}$ and $\{6, 10, 12\}$.

* **Exercise 4.** Let R_1 and R_2 be two equivalence relations on the set A. Show that $R_1 \circ R_2$ is an equivalence relation if and only if $R_1 \circ R_2 = R_2 \circ R_1$.

Solution. $R_1 \circ R_2$ is reflexive iff $(x, x) \in R_1 \circ R_2$ for all x in A iff $(x, y) \in R_1$ and $(y, x) \in R_2$ for all x in A and for some $y \in A$. But then, as both R_1 and R_2 are equivalence relations, we can choose y equal to x for all x in A.

 $R_1 \circ R_2$ is symmetric iff $(x, y) \in R_1 \circ R_2 \Leftrightarrow (y, x) \in R_1 \circ R_2$. Now $(x, y) \in R_1 \circ R_2$ iff there is some $(x, z) \in R_1$ and $(z, y) \in R_2$. Using the symmetric property for R_1 and R_2 , we get that this is equivalent to $(z, x) \in R_1$ and $(y, z) \in R_2$, which is equivalent to $(y, x) \in R_2 \circ R_1$. Repeating this argument with x and y interchanged we get that $(y, x) \in R_1 \circ R_2$ iff $(x, y) \in R_2 \circ R_1$. Hence, $R_1 \circ R_2$ is symmetric iff $R_1 \circ R_2 = R_2 \circ R_1$.

 $R_1 \circ R_2$ is transitive iff $(x, y) \in R_1 \circ R_2$ and $(y, z) \in R_1 \circ R_2$ implies $(x, z) \in R_1 \circ R_2$.

Note that: $(x, y) \in R_1 \circ R_2$ is equivalent to there being a x' such that $(x, x') \in R_1$ and $(x', y) \in R_2$. $(y, z) \in R_1 \circ R_2$ is equivalent to there being a y' such that $(y, y') \in R_1$ and $(y', z) \in R_2$.

If $R_1 \circ R_2 = R_2 \circ R_1$, then $(x, y) \in R_2 \circ R_1 = R_1 \circ R_2$ iff $(x, x'') \in R_2$ and $(x'', y) \in R_1$ and $(y, z) \in R_1 \circ R_2$ iff $(y, y'') \in R_2$ and $(y'', z) \in R_1$.

 $(x', y') \in R_2 \circ R_1 = R_1 \circ R_2$ follows from the above, and is equivalent to $(x', w) \in R_1$ and $(w, y') \in R_2$, from which we deduce $(x, w) \in R_1$ and $(w, z) \in R_2$, which is equivalent to $(x, z) \in R_1 \circ R_2$.

This was what was to be shown. (It might seem that we have skipped the "only if" direction when dealing with the transitivity property, but it is not necessary: the necessity of the assumption was shown when dealing with the symmetric property.)

Digression: Upon reflection, we might see that what we have shown is that $(R_1 \circ R_2) \circ (R_1 \circ R_2) \subseteq R_1 \circ R_2$. Hence, as R_1 and R_2 are equivalence relations, what we have done, essentially, is to "show" that

$$(R_1 \circ R_2) \circ (R_1 \circ R_2) = R_1 \circ (R_2 \circ R_1) \circ R_2$$
$$= R_1 \circ (R_1 \circ R_2) \circ R_2$$
$$= (R_1 \circ R_1) \circ (R_2 \circ R_2)$$
$$\subset R_1 \circ R_2$$

Note, that the equations/computations above don't necessarily make formal sense, but are meant to express the intuition for this.

Exercise 5. (Grimaldi, 5. ed., Exercises 5.1, page 252) *Exercise 9*

Solution.

Exercise 6. (Grimaldi, 5. ed., Exercises 5.1, page 252) *Exercise 11*

Solution.

Exercise 7. (Grimaldi, 5. ed., Exercises 7.1, page 343) *Exercise 5*

Solution.

* **Exercise 8.** Which of the relations in <u>Exercise 5</u> (Grimaldi, 5. ed., Exercises 7.1, page 343) are equivalence relations?

Solution.

 \star Exercise 9. Show in detail the set equality

$$(A \triangle B) \cup B = (A \cup B).$$

Solution.

$$(A \triangle B) \cup B = ((A \cap \overline{B}) \cup (B \cap \overline{A})) \cup B$$
$$= ((A \cap \overline{B}) \cup B) \cup ((B \cap \overline{A}) \cup B)$$
$$= ((A \cup B) \cap (\overline{B} \cup B)) \cup ((B \cup B) \cap (\overline{A} \cup B))$$
$$= (((A \cup B) \cap (\mathcal{U}))) \cup (B \cap (\overline{A} \cup B))$$
$$= (A \cup B) \cup ((B \cap (\overline{A} \cup B))))$$
$$= A \cup B$$

* **Exercise 10.** Use the laws of logic to simplify $(p \lor (p \land q) \lor (p \land q \land \neg r)) \land ((p \land r \land t) \lor t)$.

Solution.

$$(p \lor (p \land q) \lor (p \land q \land \neg r)) \land ((p \land r \land t) \lor t) \Leftrightarrow p \land t$$

Here, we have used three times that $p \lor (p \land q) \Leftrightarrow p$ for propositional variables p and q.

*** Exercise 11.** Show by induction that

$$\sum_{k=1}^{n} 4(k^3 - 3k^2 + 2k) = (n^2 + n)(n^2 - 3n + 2).$$

Solution. For the base step, we note that both sides equal zero for n = 1.

For the induction step, assume the claim holds for n. We want to show it then holds for n + 1, too.

3

$$LHS = 4((n+1)^3 - 3(n+1)^2 + 2(n+1)) + \sum_{k=1}^n 4(k^3 - 3k^2 + 2k)$$
$$= \sum_{k=1}^{n+1} 4(k^3 - 3k^2 + 2k)$$

$$RHS = 4((n+1)^3 - 3(n+1)^2 + 2(n+1)) + (n^2 + n)(n^2 - 3n + 2)$$

= 4(n+1)^3 - 12(n+1)^2 + 8(n+1) + n^4 - 3n^3 + 2n^2 + n^3 - 3n^2 + 2n
= ((n+1)^2 + (n+1))((n+1)^2 - 3(n+1) + 2)

* Exercise 12. Show that if u_n is defined recursively by the rules $u_1 = 1$, $u_2 = 5$ and for all n > 1, $u_{n+1} = 5u_n - 6u_{n-1}$, then $u_n = 3^n - 2^n$ for all $n \in \mathbb{N}$.

Solution. We proceed by induction.

The base step is clear: $u_3 = 5u_2 - 6u_1 = 25 - 6 = 19 = 3^3 - 2^3$. For the inductive step, we compute:

$$u_{n+1} = 5u_n - 6u_{n-1} = 5(3^n - 2^n) - 6(3^{n-1} - 2^{n-1})$$

= 5 \cdot 3^n - 5 \cdot 2^n - 2 \cdot 3^n + 3 \cdot 2^n
= 3^{n+1} - 2^{n+1}.

This was what was to be shown.

* Exercise 13. (Grimaldi, 5. ed., Exercises 4.2, page 209) Exercise 12

Solution.

Exercise 14. (Grimaldi, 5. ed., Exercises 4.2, page 209) Exercise 13

Solution.