MAO0301
ELEMENTARY DISCRETE MATHEMATICS
NTNU, SPRING 2019

EXERCISE SET 6

NOTE: Problems marked with a x are mandatory. Their solutions must be included
to get the set approved.

* Exercise 1. Recall that binary relations are sets, such that the set operations U, N and comple-
ment apply to them. Let A, B be two non-empty sets. Let R C A x B be a binary relation. We
denote the domain of R by dom(R) and the range of R by ran(R). The complement of R is defined
as R:=(Ax B)\R= (A x B) - R.

Now let Ry, Ry C A x B be two binary relations. Show that:

i) dom(Ry U Ry) = dom(R;) U dom(Ry)

ii) ran(Ry U Re) = ran(R;) Uran(Ra)

iit) dom(Ry N Re) € dom(Ry) Ndom(Rs)

iv) ran(R; N Rg) C ran(Ry) Nran(Ry).

Solution. We show i) as the proof of ii) is done by simply replacing ”domain” everywhere by
"range”: note that (a,b) € R U Ry < ((a,b) € RV (a,b) € Ry). Now, a € dom(R; U Ry) iff there
is some (a, b) such that (a,b) € R1URy iff (a,b) € R1V (a,b) € Ry iff (a € dom(R1)Va € dom(Ry)).
All together, this gives the first equivalence in the following:

a € dom(R; URy) < (a € dom(R;)Vaedom(Ry)) < (a € dom(R;) U dom(R3)).

The second follows by definition of U.

As for iii) and iv), we only show iii) as the proof of iv) follows as above: a € dom(R; N Ry) iff
there is some (a,b) such that (a,b) € Ry N Ry iff (a,b) € Ry A (a,b) € Ry. The last claim implies
that a € dom(R1) A a € dom(Rz), which is equivalent to a € dom(R;) N dom(Ry). [ |

* Exercise 2. You have the set A ={a,b,c,d,e, f}. We define the following two binary relations
on A:

Sl = {(a> b)? (bv C), (C7 d)a (d> 6), (ev f)v (f7 a)}
Sy = {(av b)7 (b7 C)a (67 d)v (dv 6)7 (ev f)v (f? CL), (aa d)7 (da a)7 (f7 C)v (Ca f)}

1) Draw the arrow diagrams representing these two binary relation.
2) Give the arrow diagram representations for:

(a) S1MN Sy, (b) S1U Sy, (C) S1— 5o, (d) 5’1 (6) Sl_l (f) S1085.

* Exercise 3. Consider the set S = {1,2,3,4,5,6,7,8,9,10,11,12}. Define the relation R on S
that relates every number in S to those that have the same number of divisors as it. Show that R

is an equivalence relation. Find the partition of S corresponding to R.
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Solution. While this problem is fairly concrete, it is perhaps easier to show that this is an equivalence
relation by working ”abstractly”: every number x has the same number of divisor as itself, i.e.
(z,z) € R for every x € S, and hence reflexivity follows; (z,y) is in the relation iff x and y have
the same number of divisors iff (y, z) is in the relation, and hence we get symmetry; and finally, for
transitivity, note that (x,y) € R and (y,z) € R iff  has the same number of divisors as y and y
has the same number of divisors as z, so that by the transitivty of equality for whole numbers, x
has the same number of divisors as z, implying (z, z) € R, and hence we are done.

We note here that we consistently used that equality for whole numbers is an equivalence relation
to show that R is one, too. This is often useful in similar situations.

Finding the partition: 1 is the only number with only 1 divisor.

2,3,5,7,11 are the only primes and thus have 2 divisors. While 4, 8,9 are composite, they likewise
only have 2 divisors, being squares and cubes.

6,10, 12 are all composite with 3 divisors.

The partition is thus given as {1},{2,3,4,5,7,8,9,11} and {6, 10, 12}. |

* Exercise 4. Let Ry and Ro be two equivalence relations on the set A. Show that Ri o Ry is an

equivalence relation if and only if R o Ro = Ro o Ry.

Solution. Ry o Ry is reflexive iff (z,x) € Ry o Ry for all z in A iff (z,y) € Ry and (y,z) € Ry for all
z in A and for some y € A. But then, as both Ry and Rs are equivalence relations, we can choose
y equal to x for all z in A.

R; o Ry is symmetric iff (z,y) € Ry o Ry < (y,x) € Ry o Ry. Now (z,y) € Ry o Ry iff there is
some (x,z) € Ry and (z,y) € Re. Using the symmetric property for Ry and R, we get that this
is equivalent to (z,z) € R; and (y,z2) € Ra, which is equivalent to (y,x) € Rg o R;. Repeating
this argument with x and y interchanged we get that (y,z) € Ry o Rp iff (x,y) € Ry o Ry. Hence,
Ry o Ry is symmetric iff Ry o Ry = Ry o R;.

Ry o Ry is transitive iff (x,y) € Ry o Ry and (y, z) € Ry o Ry implies (x, 2z) € Ry o Ra.

Note that: (z,y) € RjoRs is equivalent to there being a 2’ such that (z,2') € Ry and (2/,y) € Ro.
(y,z) € Ry o Ry is equivalent to there being a 3’ such that (y,y’) € Ry and (v/, 2) € Ro.

If Ry o Ry = Ro o Ry, then (z,y) € Roo Ry = Ry o Ry iff (x,2”) € Ry and (2”,y) € Ry and
(y,2) € Ry o Ry iff (y,y") € Ry and (y”, 2) € R;.

(z',y") € Ryo Ry = Ry o0 Ry follows from the above, and is equivalent to (z/,w) € Ry and (w,y’) €
Ry, from which we deduce (z,w) € Ry and (w, z) € Ry, which is equivalent to (x, z) € R o Ra.

This was what was to be shown. (It might seem that we have skipped the "only if” direction
when dealing with the transitivity property, but it is not necessary: the necessity of the assumption
was shown when dealing with the symmetric property.)

Digression: Upon reflection, we might see that what we have shown is that (RjoRz2)o(R10R2) C
Ri0Ry. Hence, as R and Ry are equivalence relations, what we have done, essentially, is to ”show”
that

(RioRy)o(RyoRy)=Ry0(Ry0oRy)o Ry
=Ryo0(R10oR)0oRy
= (Ri1oRy)o (R0 Ry)
C RioRy
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Note, that the equations/computations above don’t necessarily make formal sense, but are meant
to express the intuition for this. |

Exercise 5. (Grimaldi, 5. ed., Exercises 5.1, page 252) Exercise 9
Solution. |
Exercise 6. (Grimaldi, 5. ed., Exercises 5.1, page 252) Exercise 11
Solution. |
Exercise 7. (Grimaldi, 5. ed., Exercises 7.1, page 343) Ezercise 5
Solution. |

* Exercise 8. Which of the relations in Exercise 5 (Grimaldi, 5. ed., Exercises 7.1, page 343) are
equivalence relations?

Solution. [ |

* Exercise 9. Show in detail the set equality

(AAB)UB = (AU B).

Solution.
(AABYUB = ((ANB)U(BNA))UB
=((ANB)UB)U((BNA)UB)
=((AuB)N(BUB))U((BUB)N (AU B))
=(((AuB)NU))) U (BN(AUB))
=(AUB)U((BN(AUB))))
=AUB
|
* Exercise 10. Use the laws of logic to simplify (p VipAgQV(pAgA —|T‘)) A ((p AT At)V t).
Solution.
(pvVAgV(AgA-T)A((PATAL)VE) S pAL
Here, we have used three times that p V (p A q) < p for propositional variables p and q. |

* Exercise 11. Show by induction that
> A(K? - 3K% + 2k) = (n® +n)(n® — 3n + 2).
k=1

Solution. For the base step, we note that both sides equal zero for n = 1.
For the induction step, assume the claim holds for n. We want to show it then holds for n + 1,
too.
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LHS =4((n+1® = 3(n+1)° +2(n+1)) + > _ 4(k* — 3k + 2k)
k=1
n+1
= > A(K® - 3K% + 2k)
k=1

RHS =4((n+ 13 =3(n+ 12 +2(n+1)) + (n®> +n)(n® — 3n+2)
=4(n+1)2 =12(n+ 12 +8(n+1) +n? — 3n® +2n* + 13 — 302 + 2n
=((n+ 12+ n+1)((n+1)2=3(n+1)+2)
|

* Exercise 12. Show that if uy is defined recursively by the rules uy = 1, uo =5 and for alln > 1,
Upt1 = DUy — Oup—1, then uy, = 3" — 2" for alln € N.

Solution. We proceed by induction.
The base step is clear: ug = bug — 6u; =25 — 6 = 19 = 3% — 23,
For the inductive step, we compute:

Uny1 = By — Bty = 5(3" —2") — 6(3" 1 —2"71)

=5-3"-5-2"-2.3"43.2"
:3n+1_2n+1'

This was what was to be shown. |
* Exercise 13. (Grimaldi, 5. ed., Exercises 4.2, page 209) Ezercise 12

Solution. |
Exercise 14. (Grimaldi, 5. ed., Exercises 4.2, page 209) Exercise 13

Solution. |



