MA0301
 ELEMENTARY DISCRETE MATHEMATICS NTNU, SPRING 2019

Exercise Set 6

NOTE: Problems marked with $a \star$ are mandatory. Their solutions must be included to get the set approved.
\star Exercise 1. Recall that binary relations are sets, such that the set operations \cup, \cap and complement apply to them. Let A, B be two non-empty sets. Let $R \subseteq A \times B$ be a binary relation. We denote the domain of R by $\operatorname{dom}(R)$ and the range of R by $\operatorname{ran}(R)$. The complement of R is defined as $\bar{R}:=(A \times B) \backslash R=(A \times B)-R$.

Now let $R_{1}, R_{2} \subseteq A \times B$ be two binary relations. Show that:
i) $\operatorname{dom}\left(R_{1} \cup R_{2}\right)=\operatorname{dom}\left(R_{1}\right) \cup \operatorname{dom}\left(R_{2}\right)$
ii) $\operatorname{ran}\left(R_{1} \cup R_{2}\right)=\operatorname{ran}\left(R_{1}\right) \cup \operatorname{ran}\left(R_{2}\right)$
iii) $\operatorname{dom}\left(R_{1} \cap R_{2}\right) \subseteq \operatorname{dom}\left(R_{1}\right) \cap \operatorname{dom}\left(R_{2}\right)$
iv) $\operatorname{ran}\left(R_{1} \cap R_{2}\right) \subseteq \operatorname{ran}\left(R_{1}\right) \cap \operatorname{ran}\left(R_{2}\right)$.

Solution. We show i) as the proof of ii) is done by simply replacing "domain" everywhere by "range": note that $(a, b) \in R_{1} \cup R_{2} \Leftrightarrow\left((a, b) \in R_{1} \vee(a, b) \in R_{2}\right)$. Now, $a \in \operatorname{dom}\left(R_{1} \cup R_{2}\right)$ iff there is some (a, b) such that $(a, b) \in R_{1} \cup R_{2}$ iff $(a, b) \in R_{1} \vee(a, b) \in R_{2}$ iff $\left(a \in \operatorname{dom}\left(R_{1}\right) \vee a \in \operatorname{dom}\left(R_{2}\right)\right)$. All together, this gives the first equivalence in the following:

$$
a \in \operatorname{dom}\left(R_{1} \cup R_{2}\right) \Leftrightarrow\left(a \in \operatorname{dom}\left(R_{1}\right) \vee a \in \operatorname{dom}\left(R_{2}\right)\right) \Leftrightarrow\left(a \in \operatorname{dom}\left(R_{1}\right) \cup \operatorname{dom}\left(R_{2}\right)\right) .
$$

The second follows by definition of \cup.
As for iii) and iv), we only show iii) as the proof of iv) follows as above: $a \in \operatorname{dom}\left(R_{1} \cap R_{2}\right)$ iff there is some (a, b) such that $(a, b) \in R_{1} \cap R_{2}$ iff $(a, b) \in R_{1} \wedge(a, b) \in R_{2}$. The last claim implies that $a \in \operatorname{dom}\left(R_{1}\right) \wedge a \in \operatorname{dom}\left(R_{2}\right)$, which is equivalent to $a \in \operatorname{dom}\left(R_{1}\right) \cap \operatorname{dom}\left(R_{2}\right)$.

* Exercise 2. You have the set $A=\{a, b, c, d, e, f\}$. We define the following two binary relations on A :

$$
\begin{gathered}
S_{1}=\{(a, b),(b, c),(c, d),(d, e),(e, f),(f, a)\} \\
S_{2}=\{(a, b),(b, c),(c, d),(d, e),(e, f),(f, a),(a, d),(d, a),(f, c),(c, f)\}
\end{gathered}
$$

1) Draw the arrow diagrams representing these two binary relation.
2) Give the arrow diagram representations for:
(a) $S_{1} \cap S_{2}$, (b) $S_{1} \cup S_{2}$, (c) $S_{1}-S_{2}$, (d) \bar{S}_{1} (e) S_{1}^{-1} (f) $S_{1} \circ S_{2}$.

* Exercise 3. Consider the set $S=\{1,2,3,4,5,6,7,8,9,10,11,12\}$. Define the relation R on S that relates every number in S to those that have the same number of divisors as it. Show that R is an equivalence relation. Find the partition of S corresponding to R.

Solution. While this problem is fairly concrete, it is perhaps easier to show that this is an equivalence relation by working "abstractly": every number x has the same number of divisor as itself, i.e. $(x, x) \in R$ for every $x \in S$, and hence reflexivity follows; (x, y) is in the relation iff x and y have the same number of divisors iff (y, x) is in the relation, and hence we get symmetry; and finally, for transitivity, note that $(x, y) \in R$ and $(y, z) \in R$ iff x has the same number of divisors as y and y has the same number of divisors as z, so that by the transitivty of equality for whole numbers, x has the same number of divisors as z, implying $(x, z) \in R$, and hence we are done.

We note here that we consistently used that equality for whole numbers is an equivalence relation to show that R is one, too. This is often useful in similar situations.

Finding the partition: 1 is the only number with only 1 divisor.
$2,3,5,7,11$ are the only primes and thus have 2 divisors. While $4,8,9$ are composite, they likewise only have 2 divisors, being squares and cubes.
$6,10,12$ are all composite with 3 divisors.
The partition is thus given as $\{1\},\{2,3,4,5,7,8,9,11\}$ and $\{6,10,12\}$.

* Exercise 4. Let R_{1} and R_{2} be two equivalence relations on the set A. Show that $R_{1} \circ R_{2}$ is an equivalence relation if and only if $R_{1} \circ R_{2}=R_{2} \circ R_{1}$.

Solution. $R_{1} \circ R_{2}$ is reflexive iff $(x, x) \in R_{1} \circ R_{2}$ for all x in A iff $(x, y) \in R_{1}$ and $(y, x) \in R_{2}$ for all x in A and for some $y \in A$. But then, as both R_{1} and R_{2} are equivalence relations, we can choose y equal to x for all x in A.
$R_{1} \circ R_{2}$ is symmetric iff $(x, y) \in R_{1} \circ R_{2} \Leftrightarrow(y, x) \in R_{1} \circ R_{2}$. Now $(x, y) \in R_{1} \circ R_{2}$ iff there is some $(x, z) \in R_{1}$ and $(z, y) \in R_{2}$. Using the symmetric property for R_{1} and R_{2}, we get that this is equivalent to $(z, x) \in R_{1}$ and $(y, z) \in R_{2}$, which is equivalent to $(y, x) \in R_{2} \circ R_{1}$. Repeating this argument with x and y interchanged we get that $(y, x) \in R_{1} \circ R_{2}$ iff $(x, y) \in R_{2} \circ R_{1}$. Hence, $R_{1} \circ R_{2}$ is symmetric iff $R_{1} \circ R_{2}=R_{2} \circ R_{1}$.
$R_{1} \circ R_{2}$ is transitive iff $(x, y) \in R_{1} \circ R_{2}$ and $(y, z) \in R_{1} \circ R_{2}$ implies $(x, z) \in R_{1} \circ R_{2}$.
Note that: $(x, y) \in R_{1} \circ R_{2}$ is equivalent to there being a x^{\prime} such that $\left(x, x^{\prime}\right) \in R_{1}$ and $\left(x^{\prime}, y\right) \in R_{2}$. $(y, z) \in R_{1} \circ R_{2}$ is equivalent to there being a y^{\prime} such that $\left(y, y^{\prime}\right) \in R_{1}$ and $\left(y^{\prime}, z\right) \in R_{2}$.

If $R_{1} \circ R_{2}=R_{2} \circ R_{1}$, then $(x, y) \in R_{2} \circ R_{1}=R_{1} \circ R_{2}$ iff $\left(x, x^{\prime \prime}\right) \in R_{2}$ and $\left(x^{\prime \prime}, y\right) \in R_{1}$ and $(y, z) \in R_{1} \circ R_{2}$ iff $\left(y, y^{\prime \prime}\right) \in R_{2}$ and $\left(y^{\prime \prime}, z\right) \in R_{1}$.
$\left(x^{\prime}, y^{\prime}\right) \in R_{2} \circ R_{1}=R_{1} \circ R_{2}$ follows from the above, and is equivalent to $\left(x^{\prime}, w\right) \in R_{1}$ and $\left(w, y^{\prime}\right) \in$ R_{2}, from which we deduce $(x, w) \in R_{1}$ and $(w, z) \in R_{2}$, which is equivalent to $(x, z) \in R_{1} \circ R_{2}$.

This was what was to be shown. (It might seem that we have skipped the "only if" direction when dealing with the transitivity property, but it is not necessary: the necessity of the assumption was shown when dealing with the symmetric property.)

Digression: Upon reflection, we might see that what we have shown is that $\left(R_{1} \circ R_{2}\right) \circ\left(R_{1} \circ R_{2}\right) \subseteq$ $R_{1} \circ R_{2}$. Hence, as R_{1} and R_{2} are equivalence relations, what we have done, essentially, is to "show" that

$$
\begin{aligned}
\left(R_{1} \circ R_{2}\right) \circ\left(R_{1} \circ R_{2}\right) & =R_{1} \circ\left(R_{2} \circ R_{1}\right) \circ R_{2} \\
& =R_{1} \circ\left(R_{1} \circ R_{2}\right) \circ R_{2} \\
& =\left(R_{1} \circ R_{1}\right) \circ\left(R_{2} \circ R_{2}\right) \\
& \subseteq R_{1} \circ R_{2}
\end{aligned}
$$

Note, that the equations/computations above don't necessarily make formal sense, but are meant to express the intuition for this.

Exercise 5. (Grimaldi, 5. ed., Exercises 5.1, page 252) Exercise 9
Solution.

Exercise 6. (Grimaldi, 5. ed., Exercises 5.1, page 252) Exercise 11
Solution.

Exercise 7. (Grimaldi, 5. ed., Exercises 7.1, page 343) Exercise 5
Solution.
\star Exercise 8. Which of the relations in Exercise 5 (Grimaldi, 5. ed., Exercises 7.1, page 343) are equivalence relations?

Solution.
\star Exercise 9. Show in detail the set equality

$$
(A \triangle B) \cup B=(A \cup B)
$$

Solution.

$$
\begin{aligned}
(A \triangle B) \cup B & =((A \cap \bar{B}) \cup(B \cap \bar{A})) \cup B \\
& =((A \cap \bar{B}) \cup B) \cup((B \cap \bar{A}) \cup B) \\
& =((A \cup B) \cap(\bar{B} \cup B)) \cup((B \cup B) \cap(\bar{A} \cup B)) \\
& =(((A \cup B) \cap(\mathcal{U}))) \cup(B \cap(\bar{A} \cup B)) \\
& =(A \cup B) \cup((B \cap(\bar{A} \cup B)))) \\
& =A \cup B
\end{aligned}
$$

\star Exercise 10. Use the laws of logic to simplify $(p \vee(p \wedge q) \vee(p \wedge q \wedge \neg r)) \wedge((p \wedge r \wedge t) \vee t)$.
Solution.

$$
(p \vee(p \wedge q) \vee(p \wedge q \wedge \neg r)) \wedge((p \wedge r \wedge t) \vee t) \Leftrightarrow p \wedge t
$$

Here, we have used three times that $p \vee(p \wedge q) \Leftrightarrow p$ for propositional variables p and q.

* Exercise 11. Show by induction that

$$
\sum_{k=1}^{n} 4\left(k^{3}-3 k^{2}+2 k\right)=\left(n^{2}+n\right)\left(n^{2}-3 n+2\right)
$$

Solution. For the base step, we note that both sides equal zero for $n=1$.
For the induction step, assume the claim holds for n. We want to show it then holds for $n+1$, too.

$$
\begin{aligned}
& \text { LHS }=4\left((n+1)^{3}-3(n+1)^{2}+2(n+1)\right)+\sum_{k=1}^{n} 4\left(k^{3}-3 k^{2}+2 k\right) \\
& \quad=\sum_{k=1}^{n+1} 4\left(k^{3}-3 k^{2}+2 k\right) \\
& \text { RHS }=4\left((n+1)^{3}-3(n+1)^{2}+2(n+1)\right)+\left(n^{2}+n\right)\left(n^{2}-3 n+2\right) \\
& =4(n+1)^{3}-12(n+1)^{2}+8(n+1)+n^{4}-3 n^{3}+2 n^{2}+n^{3}-3 n^{2}+2 n \\
& =\left((n+1)^{2}+(n+1)\right)\left((n+1)^{2}-3(n+1)+2\right)
\end{aligned}
$$

* Exercise 12. Show that if u_{n} is defined recursively by the rules $u_{1}=1, u_{2}=5$ and for all $n>1$, $u_{n+1}=5 u_{n}-6 u_{n-1}$, then $u_{n}=3^{n}-2^{n}$ for all $n \in \mathbb{N}$.

Solution. We proceed by induction.
The base step is clear: $u_{3}=5 u_{2}-6 u_{1}=25-6=19=3^{3}-2^{3}$.
For the inductive step, we compute:

$$
\begin{aligned}
u_{n+1} & =5 u_{n}-6 u_{n-1}=5\left(3^{n}-2^{n}\right)-6\left(3^{n-1}-2^{n-1}\right) \\
& =5 \cdot 3^{n}-5 \cdot 2^{n}-2 \cdot 3^{n}+3 \cdot 2^{n} \\
& =3^{n+1}-2^{n+1} .
\end{aligned}
$$

This was what was to be shown.

* Exercise 13. (Grimaldi, 5. ed., Exercises 4.2, page 209) Exercise 12

Solution.
Exercise 14. (Grimaldi, 5. ed., Exercises 4.2, page 209) Exercise 13

Solution.

