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Exercise Set 6

NOTE: Problems marked with a ? are mandatory. Their solutions must be included

to get the set approved.

? Exercise 1. Recall that binary relations are sets, such that the set operations ∪, ∩ and comple-

ment apply to them. Let A,B be two non-empty sets. Let R ⊆ A × B be a binary relation. We

denote the domain of R by dom(R) and the range of R by ran(R). The complement of R is defined

as R̄ := (A×B)\R = (A×B)−R.

Now let R1, R2 ⊆ A×B be two binary relations. Show that:

i) dom(R1 ∪R2) = dom(R1) ∪ dom(R2)

ii) ran(R1 ∪R2) = ran(R1) ∪ ran(R2)

iii) dom(R1 ∩R2) ⊆ dom(R1) ∩ dom(R2)

iv) ran(R1 ∩R2) ⊆ ran(R1) ∩ ran(R2).

Solution. We show i) as the proof of ii) is done by simply replacing ”domain” everywhere by

”range”: note that (a, b) ∈ R1 ∪R2 ⇔ ((a, b) ∈ R1 ∨ (a, b) ∈ R2). Now, a ∈ dom(R1 ∪R2) iff there

is some (a, b) such that (a, b) ∈ R1∪R2 iff (a, b) ∈ R1∨(a, b) ∈ R2 iff (a ∈ dom(R1)∨a ∈ dom(R2)).

All together, this gives the first equivalence in the following:

a ∈ dom(R1 ∪R2)⇔ (a ∈ dom(R1) ∨ a ∈ dom(R2))⇔ (a ∈ dom(R1) ∪ dom(R2)).

The second follows by definition of ∪.

As for iii) and iv), we only show iii) as the proof of iv) follows as above: a ∈ dom(R1 ∩ R2) iff

there is some (a, b) such that (a, b) ∈ R1 ∩ R2 iff (a, b) ∈ R1 ∧ (a, b) ∈ R2. The last claim implies

that a ∈ dom(R1) ∧ a ∈ dom(R2), which is equivalent to a ∈ dom(R1) ∩ dom(R2). �

? Exercise 2. You have the set A = {a, b, c, d, e, f}. We define the following two binary relations

on A:

S1 = {(a, b), (b, c), (c, d), (d, e), (e, f), (f, a)}

S2 = {(a, b), (b, c), (c, d), (d, e), (e, f), (f, a), (a, d), (d, a), (f, c), (c, f)}.

1) Draw the arrow diagrams representing these two binary relation.

2) Give the arrow diagram representations for:

(a) S1 ∩ S2, (b) S1 ∪ S2, (c) S1 − S2, (d) S̄1 (e) S−11 (f) S1 ◦ S2.

? Exercise 3. Consider the set S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. Define the relation R on S

that relates every number in S to those that have the same number of divisors as it. Show that R

is an equivalence relation. Find the partition of S corresponding to R.
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Solution. While this problem is fairly concrete, it is perhaps easier to show that this is an equivalence

relation by working ”abstractly”: every number x has the same number of divisor as itself, i.e.

(x, x) ∈ R for every x ∈ S, and hence reflexivity follows; (x, y) is in the relation iff x and y have

the same number of divisors iff (y, x) is in the relation, and hence we get symmetry; and finally, for

transitivity, note that (x, y) ∈ R and (y, z) ∈ R iff x has the same number of divisors as y and y

has the same number of divisors as z, so that by the transitivty of equality for whole numbers, x

has the same number of divisors as z, implying (x, z) ∈ R, and hence we are done.

We note here that we consistently used that equality for whole numbers is an equivalence relation

to show that R is one, too. This is often useful in similar situations.

Finding the partition: 1 is the only number with only 1 divisor.

2, 3, 5, 7, 11 are the only primes and thus have 2 divisors. While 4, 8, 9 are composite, they likewise

only have 2 divisors, being squares and cubes.

6, 10, 12 are all composite with 3 divisors.

The partition is thus given as {1}, {2, 3, 4, 5, 7, 8, 9, 11} and {6, 10, 12}. �

? Exercise 4. Let R1 and R2 be two equivalence relations on the set A. Show that R1 ◦ R2 is an

equivalence relation if and only if R1 ◦R2 = R2 ◦R1.

Solution. R1 ◦R2 is reflexive iff (x, x) ∈ R1 ◦R2 for all x in A iff (x, y) ∈ R1 and (y, x) ∈ R2 for all

x in A and for some y ∈ A. But then, as both R1 and R2 are equivalence relations, we can choose

y equal to x for all x in A.

R1 ◦ R2 is symmetric iff (x, y) ∈ R1 ◦ R2 ⇔ (y, x) ∈ R1 ◦ R2. Now (x, y) ∈ R1 ◦ R2 iff there is

some (x, z) ∈ R1 and (z, y) ∈ R2. Using the symmetric property for R1 and R2, we get that this

is equivalent to (z, x) ∈ R1 and (y, z) ∈ R2, which is equivalent to (y, x) ∈ R2 ◦ R1. Repeating

this argument with x and y interchanged we get that (y, x) ∈ R1 ◦ R2 iff (x, y) ∈ R2 ◦ R1. Hence,

R1 ◦R2 is symmetric iff R1 ◦R2 = R2 ◦R1.

R1 ◦R2 is transitive iff (x, y) ∈ R1 ◦R2 and (y, z) ∈ R1 ◦R2 implies (x, z) ∈ R1 ◦R2.

Note that: (x, y) ∈ R1◦R2 is equivalent to there being a x′ such that (x, x′) ∈ R1 and (x′, y) ∈ R2.

(y, z) ∈ R1 ◦R2 is equivalent to there being a y′ such that (y, y′) ∈ R1 and (y′, z) ∈ R2.

If R1 ◦ R2 = R2 ◦ R1, then (x, y) ∈ R2 ◦ R1 = R1 ◦ R2 iff (x, x′′) ∈ R2 and (x′′, y) ∈ R1 and

(y, z) ∈ R1 ◦R2 iff (y, y′′) ∈ R2 and (y′′, z) ∈ R1.

(x′, y′) ∈ R2◦R1 = R1◦R2 follows from the above, and is equivalent to (x′, w) ∈ R1 and (w, y′) ∈
R2, from which we deduce (x,w) ∈ R1 and (w, z) ∈ R2, which is equivalent to (x, z) ∈ R1 ◦R2.

This was what was to be shown. (It might seem that we have skipped the ”only if” direction

when dealing with the transitivity property, but it is not necessary: the necessity of the assumption

was shown when dealing with the symmetric property.)

Digression: Upon reflection, we might see that what we have shown is that (R1◦R2)◦(R1◦R2) ⊆
R1◦R2. Hence, as R1 and R2 are equivalence relations, what we have done, essentially, is to ”show”

that

(R1 ◦R2) ◦ (R1 ◦R2) = R1 ◦ (R2 ◦R1) ◦R2

= R1 ◦ (R1 ◦R2) ◦R2

= (R1 ◦R1) ◦ (R2 ◦R2)

⊆ R1 ◦R2



MA0301 ELEMENTARY DISCRETE MATHEMATICS NTNU, SPRING 2019 3

Note, that the equations/computations above don’t necessarily make formal sense, but are meant

to express the intuition for this. �

Exercise 5. (Grimaldi, 5. ed., Exercises 5.1, page 252) Exercise 9

Solution. �

Exercise 6. (Grimaldi, 5. ed., Exercises 5.1, page 252) Exercise 11

Solution. �

Exercise 7. (Grimaldi, 5. ed., Exercises 7.1, page 343) Exercise 5

Solution. �

? Exercise 8. Which of the relations in Exercise 5 (Grimaldi, 5. ed., Exercises 7.1, page 343) are

equivalence relations?

Solution. �

? Exercise 9. Show in detail the set equality

(A4B) ∪B = (A ∪B).

Solution.

(A4B) ∪B = ((A ∩ B̄) ∪ (B ∩ Ā)) ∪B

= ((A ∩ B̄) ∪B) ∪ ((B ∩ Ā) ∪B)

= ((A ∪B) ∩ (B̄ ∪B)) ∪ ((B ∪B) ∩ (Ā ∪B))

= (((A ∪B) ∩ (U))) ∪ (B ∩ (Ā ∪B))

= (A ∪B) ∪ ((B ∩ (Ā ∪B))))

= A ∪B

�

? Exercise 10. Use the laws of logic to simplify
(
p ∨ (p ∧ q) ∨ (p ∧ q ∧ ¬r)

)
∧
(
(p ∧ r ∧ t) ∨ t

)
.

Solution. (
p ∨ (p ∧ q) ∨ (p ∧ q ∧ ¬r)

)
∧
(
(p ∧ r ∧ t) ∨ t

)
⇔ p ∧ t

Here, we have used three times that p ∨ (p ∧ q)⇔ p for propositional variables p and q. �

? Exercise 11. Show by induction that

n∑
k=1

4(k3 − 3k2 + 2k) = (n2 + n)(n2 − 3n + 2).

Solution. For the base step, we note that both sides equal zero for n = 1.

For the induction step, assume the claim holds for n. We want to show it then holds for n + 1,

too.
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LHS = 4((n + 1)3 − 3(n + 1)2 + 2(n + 1)) +

n∑
k=1

4(k3 − 3k2 + 2k)

=

n+1∑
k=1

4(k3 − 3k2 + 2k)

RHS = 4((n + 1)3 − 3(n + 1)2 + 2(n + 1)) + (n2 + n)(n2 − 3n + 2)

= 4(n + 1)3 − 12(n + 1)2 + 8(n + 1) + n4 − 3n3 + 2n2 + n3 − 3n2 + 2n

= ((n + 1)2 + (n + 1))((n + 1)2 − 3(n + 1) + 2)

�

? Exercise 12. Show that if un is defined recursively by the rules u1 = 1, u2 = 5 and for all n > 1,

un+1 = 5un − 6un−1, then un = 3n − 2n for all n ∈ N.

Solution. We proceed by induction.

The base step is clear: u3 = 5u2 − 6u1 = 25− 6 = 19 = 33 − 23.

For the inductive step, we compute:

un+1 = 5un − 6un−1 = 5(3n − 2n)− 6(3n−1 − 2n−1)

= 5 · 3n − 5 · 2n − 2 · 3n + 3 · 2n

= 3n+1 − 2n+1.

This was what was to be shown. �

? Exercise 13. (Grimaldi, 5. ed., Exercises 4.2, page 209) Exercise 12

Solution. �

Exercise 14. (Grimaldi, 5. ed., Exercises 4.2, page 209) Exercise 13

Solution. �


