MA0301 ELEMENTARY DISCRETE MATHEMATICS NTNU, SPRING 2019

EXERCISE SET 2

Exercise 1.	(Grimaldi, 5. ed., Exercises 2.3)	<u>Exercise 1</u> : b)
Exercise 2.	(Grimaldi, 5. ed., Exercises 2.3)	<u>Exercise 2</u> : d)
Exercise 3.	(Grimaldi, 5. ed., Exercises 2.3)	<u>Exercise 10</u> : c), f)
Exercise 4.	(Grimaldi, 5. ed., Exercises 2.3)	<u>Exercise 13</u> : a), b) iii), v)
Exercise 5.	(Grimaldi, 5. ed., Exercises 2.4)	<u>Exercise 8</u> : a), c), h)
Exercise 6.	(Grimaldi, 5. ed., Exercises 2.4)	Exercise 12: a) i), v), viii)
Exercise 7.	(Grimaldi, 5. ed., Exercises 2.5)	Exercise 9
Exercise 8.	(Grimaldi, 5. ed., Exercises 2.5)	Exercise 10

* **Exercise 9.** Translate the following expressions into English and Norwegian and determine which of them are true statements (for numbers in \mathbb{R}):

- (1) $\forall x \exists y (x > y \to x > y^2)$
- (2) $\forall x \forall y (x > y \rightarrow \exists z (x > z \land z > y))$
- (3) $\exists x \forall y \exists z ((x+y)z=1)$
- (4) $\forall x(I(x) \rightarrow \exists y(I(y) \land (x < y))), I(x): x \text{ is an integer.}$
- (5) $\neg \exists x \forall y (I(y) \rightarrow x > y), I(x) : x \text{ is an integer.}$

Note. For the following exercise, recall that a prime number is a positive integer divisible only by itself and 1.

* Exercise 10. Translate the following phrases English into statements (for numbers in \mathbb{R} ; use I(x): x is an integer.):

- (1) No integer is both even and odd.
- (2) Not every real number is greater than an integer.
- (3) There are infinitely many primes. (Hint: this is equivalent to saying that for every natural number there is a greater prime.)
- (4) Every even integer greater than 2 is the sum of two primes. This is known as Goldbach's conjecture.

Date: January 17, 2019.