ELEMENTARY DISCRETE MATHEMATICS
 NTNU, SPRING 2019

Exercise Set 2

Exercise 1. (Grimaldi, 5. ed., Exercises 2.3)
Exercise 2. (Grimaldi, 5. ed., Exercises 2.3)
Exercise 3. (Grimaldi, 5. ed., Exercises 2.3)
Exercise 4. (Grimaldi, 5. ed., Exercises 2.3)
Exercise 5. (Grimaldi, 5. ed., Exercises 2.4)
Exercise 6. (Grimaldi, 5. ed., Exercises 2.4)
Exercise 7. (Grimaldi, 5. ed., Exercises 2.5)
Exercise 8. (Grimaldi, 5. ed., Exercises 2.5)

Exercise 1: b)
Exercise 2: d)
Exercise 10: c), f)
Exercise 13: a), b) iiii), v)
Exercise 8: a), c), h)
Exercise 12: a) i), v), viii)

Exercise 9

Exercise 10

* Exercise 9. Translate the following expressions into English and Norwegian and determine which of them are true statements (for numbers in \mathbb{R}):
(1) $\forall x \exists y\left(x>y \rightarrow x>y^{2}\right)$
(2) $\forall x \forall y(x>y \rightarrow \exists z(x>z \wedge z>y)$
(3) $\exists x \forall y \exists z((x+y) z=1)$
(4) $\forall x(I(x) \rightarrow \exists y(I(y) \wedge(x<y))), I(x): x$ is an integer.
(5) $\neg \exists x \forall y(I(y) \rightarrow x>y), I(x): x$ is an integer.

Note. For the following exercise, recall that a prime number is a positive integer divisible only by itself and 1.

* Exercise 10. Translate the following phrases English into statements (for numbers in \mathbb{R}; use $I(x): x$ is an integer.):
(1) No integer is both even and odd.
(2) Not every real number is greater than an integer.
(3) There are infinitely many primes. (Hint: this is equivalent to saying that for every natural number there is a greater prime.)
(4) Every even integer greater than 2 is the sum of two primes. This is known as Goldbach's conjecture.

